Tengunoibacter tsumagoiensis gen. nov., sp. nov., Dictyobacter kobayashii sp. nov., Dictyobacter alpinus sp. nov., and description of Dictyobacteraceae fam. nov. within the order Ktedonobacterales isolated from Tengu-no-mugimeshi, a soil-like granular mass of micro-organisms, and emended descriptions of the genera Ktedonobacter and Dictyobacter Free

Abstract

Three mesophilic, Gram-stain-positive, aerobic bacterial strains, designated Uno3, Uno11 and Uno16, were isolated from a soil-like granular micro-organism mass (termed Tengu-no-mugimeshi) collected from Tsumagoi, Gunma, Japan. They grow at 11–37 °C and pH 4.0–8.0, form branched mycelia, and have a G+C content between 49.4–50.3 mol%. The major menaquinone and fatty acid of Uno3 are MK-9 and iso-C16 : 0, respectively, whereas Uno11 and Uno16 share MK-9 (H2) and C16 : 1-2OH. The major cell-wall sugars are mannose (Uno3 and Uno11) and glucose (Uno16). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these three strains belong to the order Ktedonobacterales and are most closely related to Dictyobacter aurantiacus S-27 (sequence similarity of 91.3, 96.4 and 95.5 %). Average nucleotide identity values were <79.9 % among Uno11, Uno16 and D. aurantiacus S-27, well below the 95–96 % species circumscription threshold. Based on phenotypic features and phylogenetic positions, we propose that Uno3 represents a novel genus and species, Tengunoibacter tsumagoiensis gen. nov., sp. nov. (type strain Uno3=NBRC 113152=LMG 30471=BCRC 81113) within the new family Dictyobacteraceae fam. nov. Strains Uno11 and Uno16 are also considered to represent novel species: Dictyobacter kobayashii sp. nov. (type strain Uno11=NBRC 113153=LMG 30472=BCRC 81114) and Dictyobacter alpinus sp. nov. (type strain Uno16=NBRC 113154=BCRC 81115). We also propose an emended description of the genus Dictyobacter , classifying it within family Dictyobacteraceae, and provide emended descriptions of the genera Dictyobacter and Ktedonobacter .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003396
2019-04-16
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/1910.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003396&mimeType=html&fmt=ahah

References

  1. Cavaletti L, Monciardini P, Bamonte R, Schumann P, Rohde M et al. New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl Environ Microbiol 2006; 72:4360–4369 [View Article][PubMed]
    [Google Scholar]
  2. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria . Int J Syst Evol Microbiol 2011; 61:903–910 [View Article][PubMed]
    [Google Scholar]
  3. Yabe S, Sakai Y, Abe K, Yokota A, Také A et al. Dictyobacter aurantiacus gen. nov., sp. nov., a member of the family Ktedonobacteraceae, isolated from soil, and emended description of the genus Thermosporothrix . Int J Syst Evol Microbiol 2017; 67:2615–2621 [View Article][PubMed]
    [Google Scholar]
  4. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost and description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria . Int J Syst Evol Microbiol 2010; 60:1794–1801
    [Google Scholar]
  5. Yabe S, Sakai Y, Yokota A. Thermosporothrix narukonensis sp. nov., belonging to the class Ktedonobacteria, isolated from fallen leaves on geothermal soil, and emended description of the genus Thermosporothrix . Int J Syst Evol Microbiol 2016; 66:2152–2157 [View Article][PubMed]
    [Google Scholar]
  6. King CE, King GM. Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria . Int J Syst Evol Microbiol 2014; 64:1244–1251 [View Article][PubMed]
    [Google Scholar]
  7. Okada Y. Occurrence of masses of gelatinous microbes in the soil. Soil Sci 1937; 43:367–374 [View Article]
    [Google Scholar]
  8. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  9. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: John Wiley and Sons; 1991 pp. 115–175
    [Google Scholar]
  10. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  11. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  18. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article][PubMed]
    [Google Scholar]
  19. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015; 43:W237–W243 [View Article][PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  21. Kerepesi C, Bánky D, Grolmusz V. AmphoraNet: the webserver implementation of the AMPHORA2 metagenomic workflow suite. Gene 2014; 533:538–540 [View Article][PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  23. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  24. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  25. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S et al. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 2008; 10:2030–2041 [View Article][PubMed]
    [Google Scholar]
  26. Smiber RM, Krieg NL. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. Newark: MIDI Inc 1990
    [Google Scholar]
  28. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  29. Harper JJ, Davis GHG. NOTES: two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 1979; 29:56–58 [View Article]
    [Google Scholar]
  30. Také A, Nakashima T, Inahashi Y, Shiomi K, Takahashi Y et al. Analyses of the cell-wall peptidoglycan structures in three genera Micromonospora, Catenuloplanes, and Couchioplanes belonging to the family Micromonosporaceae by derivatization with FDLA and PMP using LC/MS. J Gen Appl Microbiol 2016; 62:199–205 [View Article][PubMed]
    [Google Scholar]
  31. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  32. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  33. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003396
Loading
/content/journal/ijsem/10.1099/ijsem.0.003396
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed