1887

Abstract

A novel Gram-stain-negative bacterium, designated strain BH-SD16, was isolated from a marine sediment sample collected in the Bohai Sea. Cells of strain BH-SD16 are aerobic, non-flagellated oval-shaped rods, showing oxidase- and catalase-positive activities. Growth occurs between 15–45 °C (optimum, 30 °C), at pH 6.0–9.0 (pH 7.0–7.5) and with 1–10 % (w/v) NaCl (3.0 %). Strain BH-SD16 contains C18 : 1 ω7c (49.2 %), C16 : 0 (17.7 %) and C18 : 1 ω7c 11-methyl (16.6 %) as the predominant fatty acids and ubiquinone-10 as the major respiratory quinone. The major polar lipids comprise phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol and two glycolipids. The size of the draft genome is 3 442 538 bp, including 3213 protein-coding genes, 40 tRNA genes and three rRNA genes, and the DNA G+C content is 63.4 mol%. Strain BH-SD16 shows the highest 16S rRNA gene sequence similarity to Pseudooctadecabacter jejudonensis (95.7 %), strains of the genus Octadecabacter (95.4–95.6 %) and strains of the genus Loktanella (93.8–95.4 %). Phylogenetic trees based on 16S rRNA gene sequences show that strain BH-SD16 forms a distinct lineage within the family Hyphomonadaceae , which is also confirmed in the multigenic phylogenetic tree calculated by RAxML. Based on the results of phenotypic, chemotaxonomic and phylogenetic analysis, strain BH-SD16 is considered to represent a novel genus and species in the family Hyphomonadaceae , for which the name Thalassorhabdomicrobium marinisediminis gen. nov., sp. nov. is proposed. The type strain is BH-SD16 (=CCTCC AB 2017073=KCTC 62201).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003394
2019-04-16
2019-08-19
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T, Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2005; pp.161–228
    [Google Scholar]
  2. Buchan A, González JM, Moran MA. Overview of the marine roseobacter lineage. Appl Environ Microbiol 2005;71:5665–5677 [CrossRef][PubMed]
    [Google Scholar]
  3. Guo LY, Ling SK, Li CM, Chen GJ, Du ZJ. Rhodosalinus sediminis gen. nov., sp. nov., isolated from marine saltern. Int J Syst Evol Microbiol 2017;67:5108–5113 [CrossRef][PubMed]
    [Google Scholar]
  4. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018;6:230 [CrossRef][PubMed]
    [Google Scholar]
  5. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  6. Ji X, Zhang C, Zhang X, Xu Z, Ding Y et al. Pelagivirga sediminicola gen. nov., sp. nov. isolated from the Bohai Sea. Int J Syst Evol Microbiol 2018;68:3494–3499 [CrossRef][PubMed]
    [Google Scholar]
  7. Dong XZ, Cai MY. Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria Beijing: Science Press; (in Chinese) 2001; pp.370–398
    [Google Scholar]
  8. Lane DJ. 16S/23S RNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics London: John Wiley & Sons Ltd; 1991; pp.115–175
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  14. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017;27:768–777 [CrossRef][PubMed]
    [Google Scholar]
  15. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  16. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013;79:7696–7701 [CrossRef][PubMed]
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  18. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008;57:758–771 [CrossRef][PubMed]
    [Google Scholar]
  19. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  21. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988;19:161–207
    [Google Scholar]
  22. Kim BY, Weon HY, Son JA, Lee CM, Hong SB et al. Thalassobacter arenae sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2009;59:487–490 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim YO, Park S, Nam BH, Kang SJ, Hur YB et al. Description of Litoreibacter meonggei sp. nov., isolated from the sea squirt Halocynthia roretzi, reclassification of Thalassobacter arenae as Litoreibacter arenae comb. nov. and emended description of the genus Litoreibacter Romanenko, et al. 2012. Int J Syst Evol Microbiol2012:1825–1831
    [Google Scholar]
  24. Park S, Yoon JH. Octadecabacter jejudonensis sp. nov., isolated from the junction between the ocean and a freshwater spring and emended description of the genus Octadecabacter. Int J Syst Evol Microbiol 2014;64:719–724 [CrossRef][PubMed]
    [Google Scholar]
  25. Gosink JJ, Herwig RP, Staley JT. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., Nonpigmented, Psychrophilic Gas Vacuolate Bacteria from Polar Sea Ice and Water. Syst Appl Microbiol 1997;20:356–365 [CrossRef]
    [Google Scholar]
  26. Billerbeck S, Orchard J, Tindall BJ, Giebel HA, Brinkhoff T et al. Description of Octadecabacter temperatus sp. nov., isolated from the southern North Sea, emended descriptions of the genus Octadecabacter and its species and reclassification of Octadecabacter jejudonensis Park and Yoon 2014 as Pseudooctadecabacter jejudonensis gen. nov., comb. nov. Int J Syst Evol Microbiol 2015;65:1967–1974 [CrossRef][PubMed]
    [Google Scholar]
  27. van Trappen S, Mergaert J, Swings J. Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004;54:1263–1269 [CrossRef][PubMed]
    [Google Scholar]
  28. Pujalte MJ, MacIán MC, Arahal DR, Ludwig W, Schleifer KH et al. Nereida ignava gen. nov., sp. nov., a novel aerobic marine alpha-proteobacterium that is closely related to uncultured Prionitis (alga) gall symbionts. Int J Syst Evol Microbiol 2005;55:631–636 [CrossRef][PubMed]
    [Google Scholar]
  29. MacIán MC, Arahal DR, Garay E, Ludwig W, Schleifer KH et al. Jannaschia rubra sp. nov., a red-pigmented bacterium isolated from sea water. Int J Syst Evol Microbiol 2005;55:649–653 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003394
Loading
/content/journal/ijsem/10.1099/ijsem.0.003394
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error