1887

Abstract

A motile, Gram-stain-negative, fusiform-shaped bacterium, designated strain T3, was isolated from rhizosphere soil of Alhagi sparsifolia, collected from Xinjiang, PR China. Strain T3 grew at 15–42 °C, pH 4–9 and 1–6 % (w/v) NaCl concentrations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain T3 belonged to the genus Pseudomonas and showed highest similarity of 98.6 % to Pseudomonas azotifigens JCM 12708, followed by Pseudomonas balearica DSM 6083 (97.8 %), Pseudomonas matsuisoli JCM 30078 (97.7 %), Pseudomonas furukawaii KF707 (97.7 %), Pseudomonas tarimensis CCTCC AB 2013065 (97.3 %) and Pseudomonas indica DSM 14015 (97.1 %). Analysis based on concatenated gene sequences of 16S rRNA, rpoB and gyrB further confirmed the phylogenetic assignment of strain T3. The Genome-to-Genome Distance Calculator results for P. azotifigens JCM12708 and P. balearica DSM 6083 were 28.7±4.4% and 24.1±2.4 %, and the average nucleotide identity scores were 81.3 and 78.1 %. The major polar lipids of strain T3 were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The predominant quinone was Q-9. The major fatty acids comprised summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c; 37.7 %), summed feature 3 (C16 : 1ω6c/C16 : 1ω7c; 28.2 %), C16 : 0 (15.6 %), C12 : 0 (7.8 %), C10 : 03-OH (3.0 %) and C12 : 03-OH (2.6 %). The G+C content of the genomic DNA of the type strain was 65.3 mol%. It is obvious from the phylogenetic, phenotypic and chemotaxonomic data that strain T3 represents a novel species of the genus Pseudomonas , for which the name Pseudomonas urumqiensis sp. nov., is proposed. The type strain is T3 (=ACCC 60124=JCM 32830).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003390
2019-04-05
2019-10-23
Loading full text...

Full text loading...

References

  1. Migula W. Uber ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894;1:235–238
    [Google Scholar]
  2. Pandey KK, Mayilraj S, Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 2002;52:1559–1567 [CrossRef][PubMed]
    [Google Scholar]
  3. Anwar N, Rozahon M, Zayadan B, Mamtimin H, Abdurahman M et al. Pseudomonas tarimensis sp. nov., an endophytic bacteria isolated from Populus euphratica. Int J Syst Evol Microbiol 2017;67:4372–4378 [CrossRef][PubMed]
    [Google Scholar]
  4. Hatayama K, Kawai S, Shoun H, Ueda Y, Nakamura A. Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 2005;55:1539–1544 [CrossRef][PubMed]
    [Google Scholar]
  5. Lin SY, Hameed A, Hung MH, Liu YC, Hsu YH et al. Pseudomonas matsuisoli sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 2015;65:902–909 [CrossRef][PubMed]
    [Google Scholar]
  6. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 1966;43:159–271 [CrossRef][PubMed]
    [Google Scholar]
  7. Ivanova EP, Christen R, Bizet C, Clermont D, Motreff L et al. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Int J Syst Evol Microbiol 2009;59:2476–2481 [CrossRef][PubMed]
    [Google Scholar]
  8. Ivanova EP, Gorshkova NM, Sawabe T, Hayashi K, Kalinovskaya NI et al. Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. Int J Syst Evol Microbiol 2002;52:2113–2120 [CrossRef][PubMed]
    [Google Scholar]
  9. Baïda N, Yazourh A, Singer E, Izard D. Pseudomonas grimontii sp. nov. Int J Syst Evol Microbiol 2002;52:1497–1503 [CrossRef][PubMed]
    [Google Scholar]
  10. Romanenko LA, Uchino M, Tebo BM, Tanaka N, Frolova GM et al. Pseudomonas marincola sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2008;58:706–710 [CrossRef][PubMed]
    [Google Scholar]
  11. Park YD, Lee HB, Yi H, Kim Y, Bae KS et al. Pseudomonas panacis sp. nov., isolated from the surface of rusty roots of Korean ginseng. Int J Syst Evol Microbiol 2005;55:1721–1724 [CrossRef][PubMed]
    [Google Scholar]
  12. Timilsina S, Minsavage GV, Preston J, Newberry EA, Paret ML et al. Pseudomonas floridensis sp. nov., a bacterial pathogen isolated from tomato. Int J Syst Evol Microbiol 2018;68:64–70 [CrossRef][PubMed]
    [Google Scholar]
  13. Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A et al. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J Med Microbiol 2004;53:73–81 [CrossRef][PubMed]
    [Google Scholar]
  14. Med I, Marsch-Moreno R, Guzmán P, Alvarez-Morales A. Physical map of the chromosome of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola. Microbiology 1998;144:493–501
    [Google Scholar]
  15. Fischer S, Godino A, Quesada JM, Cordero P, Jofré E et al. Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology 2012;158:1493–1503 [CrossRef][PubMed]
    [Google Scholar]
  16. Peix A, Rivas R, Santa-Regina I, Mateos PF, Martínez-Molina E et al. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 2004;54:847–850 [CrossRef][PubMed]
    [Google Scholar]
  17. von Bülow JF, Döbereiner J. Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci USA 1975;72:2389–2393 [CrossRef][PubMed]
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA Sequencing Chichester, England: Willey and Sons Ltd; 1991
    [Google Scholar]
  19. Ait Tayeb L, Ageron E, Grimont F, Grimont PA. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005;156:763–773 [CrossRef][PubMed]
    [Google Scholar]
  20. Yamamoto S, Harayama S, Satoshi Y, Shigeaki H. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 1995;61:1104–1109[PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  22. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  23. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res 2008;36:D25–D30 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  30. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  33. Sun J, Wang W, Ying Y, Zhu X, Liu J et al. Pseudomonas profundi sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2018;68:1776–1780 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  35. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  36. Kimura N, Watanabe T, Suenaga H, Fujihara H, Futagami T et al. Pseudomonas furukawaii sp. nov., a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil in Japan. Int J Syst Evol Microbiol 2018;68:1429–1435 [CrossRef][PubMed]
    [Google Scholar]
  37. Bennasar A, Rosselló-Mora R, Lalucat J, Moore ER. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 1996;46:200–205 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003390
Loading
/content/journal/ijsem/10.1099/ijsem.0.003390
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error