1887

Abstract

Gram-stain-negative, rod-shaped pectinolytic bacteria strains designated as DPMP315, DPMP316, DPMP317 and DPMP318 isolated from groundwater sampled from a vegetable field in the North of Poland, were subjected to the polyphasic analyses. Multilocus sequence analyses based on five housekeeping genes (gyrA, recA, recN, rpoA and rpoS) revealed their distinctiveness from the other species of the genus, simultaneously indicating that the newly described species, Pectobacterium punjabense , as well as Pectobacterium parmentieri and P. wasabiae , to be the closest relatives. In silico DNA–DNA hybridization (<43.1 %) and average nucleotide identity (<92.5 %) values of strain DPMP315 with other type strains of species of the genus Pectobacterium supported the delineation of the novel strain as representing a novel species. The phenotypic comparisons, fatty acid methyl esters compositions, genetic rep PCR fingerprint and detailed whole-cell MALDI-TOF mass spectrometry proteomic profiles permitted the differentiation of Polish strains from the type strains of all other known species of the genus Pectobacterium . The results of polyphasic analyses performed for four Polish strains are the basis for the distinction of the novel species. Here, we propose to establish DPMP315 as a type strain (=PCM3006=LMG 31077) with the name Pectobacterium polonicum sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003387
2019-04-11
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/6/1751.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003387&mimeType=html&fmt=ahah

References

  1. Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M et al. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 2012; 8:e1003013 [View Article][PubMed]
    [Google Scholar]
  2. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012; 13:614–629 [View Article][PubMed]
    [Google Scholar]
  3. Glasner JD, Marquez-Villavicencio M, Kim HS, Jahn CE, Ma B et al. Niche-specificity and the variable fraction of the Pectobacterium pan-genome. Mol Plant Microbe Interact 2008; 21:1549–1560 [View Article][PubMed]
    [Google Scholar]
  4. Zhang Y, Fan Q, Loria R. A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 2016; 39:252–259 [View Article][PubMed]
    [Google Scholar]
  5. Alcorn SM, Orum TV, Steigerwalt AG, Foster JL, Fogleman JC et al. Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int J Syst Bacteriol 1991; 41:197–212 [View Article][PubMed]
    [Google Scholar]
  6. Nabhan S, de Boer SH, Maiss E, Wydra K. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int J Syst Evol Microbiol 2013; 63:2520–2525 [View Article][PubMed]
    [Google Scholar]
  7. Gardan L, Gouy C, Christen R, Samson R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 2003; 53:381–391 [View Article][PubMed]
    [Google Scholar]
  8. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG et al. Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium . Int J Syst Evol Microbiol 2019; 69:470–475 [View Article][PubMed]
    [Google Scholar]
  9. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG et al. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int J Syst Evol Microbiol 2016; 66:5379–5383 [View Article][PubMed]
    [Google Scholar]
  10. Waleron M, Misztak A, Waleron M, Franczuk M, Wielgomas B et al. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst Appl Microbiol 2018; 41:85–93 [View Article][PubMed]
    [Google Scholar]
  11. Dees MW, Lysøe E, Rossmann S, Perminow J, Brurberg MB et al. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2017; 67:5222–5229 [View Article][PubMed]
    [Google Scholar]
  12. Sarfraz S, Riaz K, Oulghazi S, Cigna J, Sahi ST et al. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int J Syst Evol Microbiol 2018; 68:3551–3556 [View Article][PubMed]
    [Google Scholar]
  13. Waleron M, Misztak A, Waleron M, Franczuk M, Jońca J et al. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst Appl Microbiol 2018 [View Article][PubMed]
    [Google Scholar]
  14. Koh YJ, Kim GH, Lee YS, Sohn SH, Koh HS et al. Pectobacterium carotovorum subsp. actinidiae subsp. nov., a new bacterial pathogen causing canker-like symptoms in yellow kiwifruit, Actinidia chinensis . New Zeal J Crop Hortic Sci 2012; 40:269–279 [View Article]
    [Google Scholar]
  15. Shirshikov FV, Korzhenkov AA, Miroshnikov KK, Kabanova AP, Barannik AP et al. Draft genome sequences of new genomospecies "Candidatus Pectobacterium maceratum" strains, which cause soft rot in plants. Genome Announc 2018; 6:e00260-1818 [View Article][PubMed]
    [Google Scholar]
  16. Waleron M, Misztak A, Jonca J, Furmaniak M, Waleron M et al. First Report of “Candidatus Pectobacterium maceratum” causing soft rot of potato in Poland. Plant Disease 2019
    [Google Scholar]
  17. Hélias V, Hamon P, Huchet E, Wolf JVD, Andrivon D. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya . Plant Pathol 2012; 61:339–345 [View Article]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  19. Reysenbach AL, Giver LJ, Wickham GS, Pace NR. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 1992; 58:3417–3418[PubMed]
    [Google Scholar]
  20. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  23. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  24. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  25. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article][PubMed]
    [Google Scholar]
  26. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article][PubMed]
    [Google Scholar]
  27. Chen H. CRAN — package vennDiagram; 2016 https://cran.r-project.org/ web/packages/VennDiagram/index.html
  28. R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2008 http://www.r-project.org
  29. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  30. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article][PubMed]
    [Google Scholar]
  31. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  35. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article][PubMed]
    [Google Scholar]
  36. Sauer S, Kliem M. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 2010; 8:74–82 [View Article][PubMed]
    [Google Scholar]
  37. Elbing K, Brent R. Media preparation and bacteriological tools. Curr Protoc Mol Biol 2002; Chapter 1:Unit 1.1 [View Article][PubMed]
    [Google Scholar]
  38. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Biol 1994; 5:25–40
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003387
Loading
/content/journal/ijsem/10.1099/ijsem.0.003387
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error