1887

Abstract

A new aerobic alphaproteobacterium, strain SA-279, was isolated from a water sample of a crater lake. The 16S rRNA gene sequence analysis revealed that strain SA-279 formed a distinct lineage within the family Ancalomicrobiaceae and shared the highest pairwise similarity values with Pinisolibacter ravus E9 (96.4 %) and Ancalomicrobium adetum NBRC 102456 (94.2 %). Cells of strain SA-279 were rod-shaped, motile, oxidase and catalase positive, and capable of forming rosettes. Its predominant fatty acids were C18 : 1ω7c (69.0 %) and C16 : 1ω7c (22.7 %), the major respiratory quinone was Q-10, and the main polar lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, an unidentified aminophospholipid and an unidentified lipid. The G+C content of the genomic DNA of strain SA-279 was 69.2 mol%. On the basis of the phenotypic, chemotaxonomic and molecular data, strain SA-279 is considered to represent a new genus and species within the family Ancalomicrobiaceae , for which the name Siculibacillus lacustris gen. nov., sp. nov. is proposed. The type strain is SA-279 (=DSM 29840=JCM 31761).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003385
2019-04-04
2019-09-20
Loading full text...

Full text loading...

References

  1. Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2009;37:D5–D15 [CrossRef][PubMed]
    [Google Scholar]
  2. Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F et al. The Prokaryotes, Alphaproteobacteria and Betaproteobacteria, 4th ed. Berlin: Springer-Verlag; 2014
    [Google Scholar]
  3. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman JS, Berthiaume CT, Armbrust EV, Deming JW. The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis. FEMS Microbiol Ecol 2014;89:376–387 [CrossRef][PubMed]
    [Google Scholar]
  5. Szabó A, Korponai K, Kerepesi C, Somogyi B, Vörös L et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 2017;21:639–649 [CrossRef][PubMed]
    [Google Scholar]
  6. Mentes A, Szabó A, Somogyi B, Vajna B, Tugyi N et al. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 2018;94:fix164 [CrossRef]
    [Google Scholar]
  7. Máthé I, Tóth E, Mentes A, Szabó A, Márialigeti K et al. A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie van Leeuwenhoek 2018;111:2175–2183 [CrossRef][PubMed]
    [Google Scholar]
  8. Dahal RH, Chaudhary DK, Kim J. Pinisolibacter ravus gen. nov., sp. nov., isolated from pine forest soil and allocation of the genera Ancalomicrobium and Pinisolibacter to the family Ancalomicrobiaceae fam. nov., and emendation of the genus Ancalomicrobium Staley 1968. Int J Syst Evol Microbiol 2018;68:1955–1962 [CrossRef][PubMed]
    [Google Scholar]
  9. Felföldi T, Ramganesh S, Somogyi B, Krett G, Jurecska L et al. Winter planktonic microbial communities in highland aquatic habitats. Geomicrobiol J 2016;33:494–504 [CrossRef]
    [Google Scholar]
  10. Felföldi T, Vengring A, Kéki Z, Márialigeti K, Schumann P et al. Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 2014;64:1920–1925 [CrossRef][PubMed]
    [Google Scholar]
  11. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  12. Tóth E, Szuróczki S, Kéki Z, Bóka K, Szili-Kovács T et al. Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 2017;67:4565–4571 [CrossRef][PubMed]
    [Google Scholar]
  13. Heimbrook ME, Wang WL, Campbell G. Staining bacterial flagella easily. J Clin Microbiol 1989;27:2612–2615[PubMed]
    [Google Scholar]
  14. Barrow GI, Cowan RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  15. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  16. Felföldi T, Kéki Z, Sipos R, Márialigeti K, Tindall BJ et al. Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 2011;61:2146–2150 [CrossRef][PubMed]
    [Google Scholar]
  17. Felföldi T, Fikó RD, Mentes A, Kovács E, Máthé I et al. Quisquiliibacterium transsilvanicum gen. nov., sp. nov., a novel betaproteobacterium isolated from a waste-treating bioreactor. Int J Syst Evol Microbiol 2017;67:4742–4746 [CrossRef]
    [Google Scholar]
  18. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  20. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010; Available online at:http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  21. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015;31:587–589 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  24. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968;95:1921–1942[PubMed]
    [Google Scholar]
  25. Yee B, Oertli GE, Fuerst JA, Staley JT. Reclassification of the polyphyletic genus Prosthecomicrobium to form two novel genera, Vasilyevaea gen. nov. and Bauldia gen. nov. with four new combinations: Vasilyevaea enhydra comb. nov., Vasilyevaea mishustinii comb. nov., Bauldia consociata comb. nov. and Bauldia litoralis comb. nov. Int J Syst Evol Microbiol 2010;60:2960–2966 [CrossRef][PubMed]
    [Google Scholar]
  26. Staley JT. Prosthecomicrobium hirschii, a new species in a redefined genus. Int J Syst Bacteriol 1984;34:304–308 [CrossRef]
    [Google Scholar]
  27. Sittig M, Schlesner H. Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 1993;16:92–103 [CrossRef]
    [Google Scholar]
  28. Kim D, Kang K, Ahn TY. Chthonobacter albigriseus gen. nov., sp. nov., isolated from grass-field soil. Int J Syst Evol Microbiol 2017;67:883–888 [CrossRef][PubMed]
    [Google Scholar]
  29. Xie CH, Yokota A. Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int J Syst Evol Microbiol 2005;55:1233–1237 [CrossRef][PubMed]
    [Google Scholar]
  30. Im WT, Kim SH, Kim MK, Ten LN, Lee ST. Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. Int J Syst Evol Microbiol 2006;56:1663–1666 [CrossRef][PubMed]
    [Google Scholar]
  31. Madhaiyan M, Jin TY, Roy JJ, Kim SJ, Weon HY et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol 2013;63:2477–2483 [CrossRef][PubMed]
    [Google Scholar]
  32. Esquivel-Elizondo S, Maldonado J, Krajmalnik-Brown R. Anaerobic carbon monoxide metabolism by Pleomorphomonas carboxyditropha sp. nov., a new mesophilic hydrogenogenic carboxydotroph. FEMS Microbiol Ecol 2018;94: [CrossRef][PubMed]
    [Google Scholar]
  33. Lv H, Masuda S, Fujitani Y, Sahin N, Tani A. Oharaeibacter diazotrophicus gen. nov., sp. nov., a diazotrophic and facultatively methylotrophic bacterium, isolated from rice rhizosphere. Int J Syst Evol Microbiol 2017;67:576–582 [CrossRef][PubMed]
    [Google Scholar]
  34. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014;64:839–845 [CrossRef][PubMed]
    [Google Scholar]
  35. Lee SD, Joung Y, Cho JC. Phreatobacter stygius sp. nov., isolated from pieces of wood in a lava cave and emended description of the genus Phreatobacter. Int J Syst Evol Microbiol 2017;67:3296–3300 [CrossRef][PubMed]
    [Google Scholar]
  36. Kim SJ, Ahn JH, Heo J, Cho H, Weon HY et al. Phreatobacter cathodiphilus sp. nov., isolated from a cathode of a microbial fuel cell. Int J Syst Evol Microbiol 2018;68:2855–2859 [CrossRef][PubMed]
    [Google Scholar]
  37. Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P et al. Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 2003;53:555–561 [CrossRef][PubMed]
    [Google Scholar]
  38. Bandyopadhyay S, Schumann P, Das SK. Pannonibacter indica sp. nov., a highly arsenate-tolerant bacterium isolated from a hot spring in India. Arch Microbiol 2013;195:1–8 [CrossRef][PubMed]
    [Google Scholar]
  39. Xi L, Qiao N, Liu D, Li J, Zhang J et al. Pannonibacter carbonis sp. nov., isolated from coal mine water. Int J Syst Evol Microbiol 2018;68:2042–2047 [CrossRef][PubMed]
    [Google Scholar]
  40. Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Prokaryotic Nomenclature up-to-date, update. 2019;http://www.dsmz.de/bacterial-diversity/prokaryotic-nomenclature-up-to-date
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003385
Loading
/content/journal/ijsem/10.1099/ijsem.0.003385
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error