1887

Abstract

A moderately thermophilic, aerobic, Gram-stain-negative, non-spore-forming, rod-shaped and yellow-pigmented bacterium, designated strain SYSU G00007, was isolated from a hot spring slurry sample. Optimum growth was observed at 37–45 °C and pH 7. Pairwise comparison of the 16S rRNA gene sequence of strain SYSU G00007 and other Novosphingobium species showed sequence similarities ranging from 93.7 to 97.9 %. Strain SYSU G00007 showed highest sequence identity to Novosphingobium subterraneum DSM 12447 (97.9 %). The average nucleotide identities and digital DNA–DNA hybridization values between strain SYSU G00007 and its closely related phylogenetic neighbours were below 81 and 31 %, respectively, indicating that strain SYSU G00007 represented a novel species of the genus Novosphingobium . The DNA G+C content of strain SYSU G00007 was 64.3 % (genome). The major respiratory quinone was ubiquinone Q-10. The polar lipid profile included diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two sphingoglycolipids, two unidentified phospholipids, two unidentified aminophospholipids and two unidentified polar lipids. Spermidine was the only polyamine detected. The major fatty acids were C19 : 0cyclo ω8c, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The results obtained from phylogenetic, chemotaxonomic and phenotypic analyses support the conclusion that strain SYSU G00007 represents a novel species of the genus Novosphingobium , for which we proposed the name Novosphingobium meiothermophilum sp. nov. The type strain is SYSU G00007 (=KCTC 52672=CCTCC AB2017010).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003384
2019-04-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/6/1737.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003384&mimeType=html&fmt=ahah

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  3. Hyeon JW, Kim K, Son AR, Choi E, Lee SK et al. Novosphingobium humi sp. nov., isolated from soil of a military shooting range. Int J Syst Evol Microbiol 2017; 67:3083–3088 [View Article][PubMed]
    [Google Scholar]
  4. Kämpfer P, Young CC, Busse HJ, Lin SY, Rekha PD et al. Novosphingobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:259–263 [View Article][PubMed]
    [Google Scholar]
  5. Li HF, Zou ZT, Li BZ, Wang X, Yang JS et al. Novosphingobium sediminis sp. nov., isolated from the sediment of a eutrophic lake. J Gen Appl Microbiol 2012; 58:357–362[PubMed]
    [Google Scholar]
  6. Lee LH, Azman AS, Zainal N, Eng SK, Fang CM et al. Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. Int J Syst Evol Microbiol 2014; 64:1194–1201 [View Article][PubMed]
    [Google Scholar]
  7. Chen N, Yu XJ, Yang JS, Wang ET, Li BZ et al. Novosphingobium tardum sp. nov., isolated from sediment of a freshwater lake. Antonie van Leeuwenhoek 2015; 108:51–57 [View Article][PubMed]
    [Google Scholar]
  8. Baek SH, Lim JH, Jin L, Lee HG, Lee ST. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int J Syst Evol Microbiol 2011; 61:2464–2468 [View Article][PubMed]
    [Google Scholar]
  9. Ngo HT, Trinh H, Kim JH, Yang JE, Won KH et al. Novosphingobium lotistagni sp. nov., isolated from a lotus pond. Int J Syst Evol Microbiol 2016; 66:4729–4734 [View Article][PubMed]
    [Google Scholar]
  10. Tiirola MA, Männistö MK, Puhakka JA, Kulomaa MS. Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 2002; 68:173–180 [View Article][PubMed]
    [Google Scholar]
  11. Huo YY, You H, Li ZY, Wang CS, Xu XW. Novosphingobium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015; 65:676–680 [View Article][PubMed]
    [Google Scholar]
  12. Yuan J, Lai Q, Zheng T, Shao Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009; 59:2084–2088 [View Article][PubMed]
    [Google Scholar]
  13. Fujii K, Satomi M, Morita N, Motomura T, Tanaka T et al. Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 2003; 53:47–52 [View Article][PubMed]
    [Google Scholar]
  14. Hashimoto T, Onda K, Morita T, Luxmy BS, Tada K et al. Contribution of the estrogen-degrading bacterium Novosphingobium sp. strain JEM-1 to estrogen removal in wastewater treatment. J Environ Eng 2010; 136:890–896 [View Article]
    [Google Scholar]
  15. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016; 66:3170–3176 [View Article][PubMed]
    [Google Scholar]
  16. Niharika N, Moskalikova H, Kaur J, Sedlackova M, Hampl A et al. Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2013; 63:667–672 [View Article][PubMed]
    [Google Scholar]
  17. Suzuki S, Hiraishi A. Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 2007; 53:221–228 [View Article][PubMed]
    [Google Scholar]
  18. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana . Int J Syst Evol Microbiol 2014; 64:594–598 [View Article][PubMed]
    [Google Scholar]
  19. Kämpfer P, Martin K, McInroy JA, Glaeser SP. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol 2015; 65:195–200 [View Article][PubMed]
    [Google Scholar]
  20. Gao S, Zhang Y, Jiang N, Luo L, Li QX et al. Novosphingobium fluoreni sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2015; 65:1409–1414 [View Article][PubMed]
    [Google Scholar]
  21. Rodriguez-Conde S, Molina L, González P, García-Puente A, Segura A. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl Microbiol Biotechnol 2016; 100:10627–10636 [View Article][PubMed]
    [Google Scholar]
  22. Lyu Y, Zheng W, Zheng T, Tian Y. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 2014; 9:e101438 [View Article][PubMed]
    [Google Scholar]
  23. Yu TT, Yao JC, Ming H, Yin YR, Zhou EM et al. Thermus tengchongensis sp. nov., isolated from a geothermally heated soil sample in Tengchong, Yunnan, south-west China. Antonie van Leeuwenhoek 2013; 103:513–518 [View Article][PubMed]
    [Google Scholar]
  24. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  25. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  31. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  33. Harrison P. SPADES - a process algebra for discrete event simulation. J Log Comput 2000; 10:3–42 [View Article]
    [Google Scholar]
  34. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  35. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article][PubMed]
    [Google Scholar]
  36. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  37. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  39. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  40. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article][PubMed]
    [Google Scholar]
  41. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001; 29:22–28 [View Article][PubMed]
    [Google Scholar]
  42. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285 [View Article][PubMed]
    [Google Scholar]
  43. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  46. Minnikin D, Collins M, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 1979; 47:87–95
    [Google Scholar]
  47. Collins M, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Microbiol 1980; 48:459–470
    [Google Scholar]
  48. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  49. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  50. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker. System 1988; 11:1–8
    [Google Scholar]
  51. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003384
Loading
/content/journal/ijsem/10.1099/ijsem.0.003384
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error