Alkalilacustris brevis gen. nov., sp. nov., isolated from a soda lake Free

Abstract

A Gram-stain-negative, aerobic, non-pigmented and short-rod-shaped bacterium, designated 34079, was isolated from a water sample of a soda lake in Jilin, a province of China. Strain 34079 grew at 10–50 °C (optimum, 35 °C), pH 7–10 (optimum, pH 8.0–8.5). NaCl was required for growth at the concentration range 1–10.0 % (w/v), with an optimum at 2.5–4 % (w/v). Chemotaxonomic analysis indicated that the sole respiratory quinone was Q-10. The predominant cellular fatty acids (>5 %) were summed feature 8 (C18 : 1  ω7c/C18 : 1  ω6c) and C16 : 0. The major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, three unidentified amino lipids, one unidentified amino phosphoglycolipid, one phosphoglycolipid, one unidentified glycolipid, three unidentified phospholipids and two unidentified lipids. The DNA G+C content was 65.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 34079 formed a distinct lineage in the clade of the family ‘ Rhodobacteraceae ’ with the highest sequence similarity of 96.1 % to Pararhodobacter aggregans , followed by Rhodobaca bogoriensis DSM 18756 (95.7 %) and Roseibaca ekhonensis DSM 11469 (94.7 %). The distinct biochemical, chemotaxonomic and phylogenetic differences from the previously described taxa supported that strain 34079 represents a novel species of a new genus, for which the name Alkalilacustris brevis gen. nov., sp. nov. is proposed. The type strain is 34079 (=KCTC 62428=MCCC 1K03493).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003373
2019-04-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/6/1669.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003373&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Order III. Rhodobacterales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. Vol. 2 New York: Springer; 2005 pp. 161 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria)
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. vol. 2 New York: Springer; 2005 pp. 1 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria)
    [Google Scholar]
  3. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. vol. 2 New York: Springer; 2005 pp. 161 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria)
    [Google Scholar]
  4. Suzuki T, Muroga Y, Takahama M, Shiba T, Nishimura Y. Rubrimonas cliftonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from a saline lake. Int J Syst Bacteriol 1999; 49 Pt 1:201–205 [View Article][PubMed]
    [Google Scholar]
  5. Kompantseva EI, Komova AV, Kostrikina NA. Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia. Int J Syst Evol Microbiol 2010; 60:1210–1214 [View Article][PubMed]
    [Google Scholar]
  6. Maszenan AM, Seviour RJ, Patel BK, Rees GN, McDougall BM et al. Amaricoccus gen. nov., a gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. Int J Syst Bacteriol 1997; 47:727–734 [View Article][PubMed]
    [Google Scholar]
  7. Hiraishi A, Muramatsu K, Ueda Y. Molecular genetic analyses of Rhodobacter azotoformans sp. nov. and related species of phototrophic bacteria. Syst Appl Microbiol 1996; 19:168–177 [View Article]
    [Google Scholar]
  8. Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER et al. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 1999; 49:1053–1073 [View Article][PubMed]
    [Google Scholar]
  9. Hiraishi A, Ueda Y. Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol 1994; 44:15–23 [View Article]
    [Google Scholar]
  10. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:3469–3475 [View Article][PubMed]
    [Google Scholar]
  11. Pujalte MJ, Lucena T. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes Berlin Heidelberg: Springer; 2014
    [Google Scholar]
  12. Zhang XQ, Sun C, Wang CS, Zhang X, Zhou X et al. Sinimarinibacterium flocculans gen. nov., sp. nov., a gammaproteobacterium from offshore surface seawater. Int J Syst Evol Microbiol 2015; 65:3541–3546 [View Article][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  14. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Kumar S, Tamura K, Nei M. MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 1994; 10:189–191 [View Article][PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  20. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article][PubMed]
    [Google Scholar]
  21. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  22. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  23. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology, 1st ed. Beijing: Scientific Press; 2001 pp. 353–364
    [Google Scholar]
  24. Zhu XF, Jia XM, Zhang XQ, Yh W. Modern Experimental Technique of Microbiology Hangzhou: Zhejiang University Press (English translation); 2011
    [Google Scholar]
  25. Kumar PA, Srinivas TN, Manasa P, Madhu S, Shivaji S et al. Lutibaculum baratangense gen. nov., sp. nov., a proteobacterium isolated from a mud volcano. Int J Syst Evol Microbiol 2012; 62:2025–2031 [View Article][PubMed]
    [Google Scholar]
  26. Wu XY, Zheng G, Zhang WW, Xu XW, Wu M et al. Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. Int J Syst Evol Microbiol 2010; 60:2540–2543 [View Article][PubMed]
    [Google Scholar]
  27. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64:2079–2083 [View Article][PubMed]
    [Google Scholar]
  28. Dornbusch K, Nord CE, Olsson B. Antibiotic susceptibility testing of anaerobic bacteria by the standardized disc diffusion method with special reference to bacteroides fragilis . Scand J Infect Dis 1975; 7:59–66 [View Article][PubMed]
    [Google Scholar]
  29. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  30. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  31. Cui HL, Gao X, Yang X, Xu XW, Xw X. Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 2011; 61:1617–1621 [View Article][PubMed]
    [Google Scholar]
  32. Sheu SY, Lin KR, Hsu MY, Sheu DS, Tang SL et al. Endozoicomonas acroporae sp. nov., isolated from Acropora coral. Int J Syst Evol Microbiol 2017; 67:3791–3797 [View Article][PubMed]
    [Google Scholar]
  33. Chen C, Su Y, Tao T, Fu G, Zhang C et al. Maripseudobacter aurantiacus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a sedimentation basin. Int J Syst Evol Microbiol 2017; 67:778–783 [View Article][PubMed]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  35. Worliczek HL, Kämpfer P, Rosengarten R, Tindall BJ, Busse HJ. Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?. Syst Appl Microbiol 2007; 30:355–370 [View Article][PubMed]
    [Google Scholar]
  36. Foesel BU, Drake HL, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Syst Appl Microbiol 2011; 34:498–502 [View Article][PubMed]
    [Google Scholar]
  37. Milford AD, Achenbach LA, Jung DO, Madigan MT. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 2000; 174:18–27 [View Article][PubMed]
    [Google Scholar]
  38. Labrenz M, Lawson PA, Tindall BJ, Hirsch P. Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int J Syst Evol Microbiol 2009; 59:1935–1940 [View Article][PubMed]
    [Google Scholar]
  39. Boldareva EN, Akimov VN, Boychenko VA, Stadnichuk IN, Moskalenko AA et al. Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology 2008; 77:206–218 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003373
Loading
/content/journal/ijsem/10.1099/ijsem.0.003373
Loading

Data & Media loading...

Supplements

Supplementary data

PDF

Most cited Most Cited RSS feed