1887

Abstract

A Gram-stain-negative, yellow-pigmented, non-motile, non-spore-forming, aerobic and rod-shaped bacterial strain, designated 17S1E7, was isolated from the Han River, Republic of Korea, and characterized by polyphasic taxonomy analyses. Strain 17S1E7 grew optimally on tryptic soy agar at 37 °C and pH 7.0 in the absence of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain 17S1E7 belonged to the genus Chryseobacterium and was most closely related to Chryseobacterium culicis DSM 23031 (98.54 %). The average nucleotide identity value of strain 17S1E7 was 91.1 % to Chryseobacterium culicis DSM 23031, which was lower than the cut-off of 95–96 %. The DNA G+C content of strain 17S1E7 was 37.4 mol%. Flexirubin-type pigments were produced. The predominant respiratory quinone was menaquinone 6. The major fatty acids of strain 17S1E7 were iso-C15 : 0, summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl), iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). The predominant polar lipid was phosphatidylethanolamine. Based on polyphasic taxonomy data, strain 17S1E7 represents a novel species of the genus Chryseobacterium , for which the name Chryseobacterium aureum sp. nov. is proposed. The type strain is 17S1E7 (=KACC 19920=JCM 33165).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003370
2019-04-02
2019-09-22
Loading full text...

Full text loading...

References

  1. Chaudhary DK, Kim J. Chryseobacterium nepalense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017;67:646–652 [CrossRef][PubMed]
    [Google Scholar]
  2. Hantsis-Zacharov E, Shakéd T, Senderovich Y, Halpern M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow's milk. Int J Syst Evol Microbiol 2008;58:2635–2639 [CrossRef][PubMed]
    [Google Scholar]
  3. Jeong JJ, Lee DW, Park B, Sang MK, Choi IG et al. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. Int J Syst Evol Microbiol 2017;67:610–616 [CrossRef][PubMed]
    [Google Scholar]
  4. Kämpfer P, Chandel K, Prasad GB, Shouche YS, Veer V. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus. Int J Syst Evol Microbiol 2010;60:2387–2391 [CrossRef][PubMed]
    [Google Scholar]
  5. Kämpfer P, Poppel MT, Wilharm G, Busse HJ, Mcinroy JA et al. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014;64:1419–1427 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim KK, Lee KC, Oh HM, Lee JS. Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 2008;58:533–537 [CrossRef][PubMed]
    [Google Scholar]
  7. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
  8. Park SJ, Choi JH, Cha CJ. Chryseobacterium rigui sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2013;63:1062–1067 [CrossRef][PubMed]
    [Google Scholar]
  9. Zamora L, Vela AI, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int J Syst Evol Microbiol 2012;62:2934–2940 [CrossRef][PubMed]
    [Google Scholar]
  10. Weon HY, Kim BY, Yoo SH, Kwon SW, Stackebrandt E et al. Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 2008;58:470–473 [CrossRef][PubMed]
    [Google Scholar]
  11. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  12. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolismvol. 3 New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015;38:209–216 [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  23. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  24. Charif D, Lobry JR. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. Structural Approaches to Sequence Evolution: Molecules, Networks, Populations Berlin Heidelberg: Springer; 2007; pp.207–232
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA Sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  30. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  31. Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek 1957;23:15–22 [CrossRef][PubMed]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  33. Collins M. Analysis of isoprenoid quinones. Methods Microbiol 1985;18:329–363
    [Google Scholar]
  34. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  35. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbial Lett 1990;60:199–202
    [Google Scholar]
  36. Siddiqi MZ, Choi GM, Kim MS, Im WT. Daejeonia ginsenosidivorans gen. nov., sp. nov., a ginsenoside-transforming bacterium isolated from lake water. Int J Syst Evol Microbiol 2017;67:2665–2671 [CrossRef][PubMed]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990 MIDI Technical Note 101; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003370
Loading
/content/journal/ijsem/10.1099/ijsem.0.003370
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error