1887

Abstract

The extent of the diversity of yeasts in tropical rain forest and different environments from French Guiana was investigated. A total of 365 samples were collected from various substrates, such as plants, fruits and insects, at 13 locations, yielding 276 pure yeast isolates. Sequence analysis of the D1/D2 domains of the large subunit rRNA gene indicated that 210 isolates out of 276 belonged to 82 described species (67 Saccharomycotina, 14 Basidiomycota and 1 Pezizomycotina). In addition to these, a total of 54 Saccharomycotina isolates could not be assigned to a known species. These belonged to 14 genera and should be studied further from a taxonomic point of view. In addition, among the 43 Basidiomycotina isolates found, 12 could not be assigned to a known species. This report shows an unexpected biodiversity and indicates that oversea territories, such as French Guiana, constitute a largely unexplored reservoir for yeast diversity. Two Saccharomycotina strains, CLIB 1706 and CLIB 1725, isolated from an insect and from a fern respectively, were characterized further and were shown to belong to the Suhomyces clade on the basis of the rDNA sequence comparison. CLIB 1706rDNA sequences showed nine substitutions and three indels out of 556 bp (D1/D2 domains) and 32 substitutions and 12 indels out of 380 bp [internal transcribed spacer (ITS)] with that of the most closely related species Suhomyces guaymorum CBS 9823. CLIB 1725 rDNA sequences presented 18 substitutions and one indel out of 549 bp (D1/D2 domains) and 48 substitutions and 11 indels out of 398 bp (ITS) with that of its closest relative Suhomyces vadensis CBS 9454. Two novel species of the genus Suhomyces were described to accommodate these two strains: Suhomyces coccinellae f.a. sp. nov. (CLIB 1706=CBS 14298) and Suhomyces faveliae f.a. sp. nov. (CLIB 1725=CBS 14299).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003369
2019-04-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/6/1634.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003369&mimeType=html&fmt=ahah

References

  1. Gargominy O. Biodiversité et conservation dans les collectivités françaises d’outre-mer. Paris: Comité français pour l’UICN 2003
    [Google Scholar]
  2. Sena LM, Morais CG, Lopes MR, Santos RO, Uetanabaro AP et al. d -Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella . Antonie van Leeuwenhoek 2017; 110:53–67 [View Article][PubMed]
    [Google Scholar]
  3. Jacques N, Sarilar V, Urien C, Lopes MR, Morais CG et al. Three novel ascomycetous yeast species of the Kazachstania clade, Kazachstania saulgeensis sp. nov., Kazachstania serrabonitensis sp. nov. and Kazachstania australis sp. nov. Reassignment of Candida humilis to Kazachstania humilis f.a. comb. nov. and Candida pseudohumilis to Kazachstania pseudohumilis f.a. comb. nov. Int J Syst Evol Microbiol 2016; 66:5192–5200 [View Article][PubMed]
    [Google Scholar]
  4. Lopes MR, Morais CG, Kominek J, Cadete RM, Soares MA et al. Genomic analysis and d-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f. a., sp. nov. and Spathaspora gorwiae f. a., sp. nov. FEMS Yeast Res 2016; 16:fow044 [View Article][PubMed]
    [Google Scholar]
  5. Dayo-Owoyemi I, Rosa CA, Rodrigues A, Pagnocca FC. Wickerhamiella kiyanii f.a., sp. nov. and Wickerhamiella fructicola f.a., sp. nov., two yeasts isolated from native plants of Atlantic rainforest in Brazil. Int J Syst Evol Microbiol 2014; 64:2152–2158 [View Article][PubMed]
    [Google Scholar]
  6. Morais CG, Lara CA, Marques S, Fonseca C, Lachance MA et al. Sugiyamaella xylanicola sp. nov., a xylan-degrading yeast species isolated from rotting wood. Int J Syst Evol Microbiol 2013; 63:2356–2360 [View Article][PubMed]
    [Google Scholar]
  7. Barbosa AC, Morais CG, Morais PB, Rosa LH, Pimenta RS et al. Wickerhamiella pagnoccae sp. nov. and Candida tocantinsensis sp. nov., two ascomycetous yeasts from flower bracts of Heliconia psittacorum (Heliconiaceae). Int J Syst Evol Microbiol 2012; 62:459–464 [View Article][PubMed]
    [Google Scholar]
  8. Santos RO, Cadete RM, Badotti F, Mouro A, Wallheim DO et al. Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest. Antonie van Leeuwenhoek 2011; 99:635–642 [View Article][PubMed]
    [Google Scholar]
  9. Zheng J, Lu YF, Liu XJ, Hui FL. Cyberlindnera xishuangbannaensis f.a., sp. nov., a yeast isolated from rotting wood. Int J Syst Evol Microbiol 2017; 67:5051–5055 [View Article][PubMed]
    [Google Scholar]
  10. Zhang CY, Liu XJ, Yi ZH, Ren YC, Li Y et al. Starmerella anomalae f.a., sp. nov., Starmerella asiatica f.a., sp. nov., Starmerella henanensis f.a., sp. nov. and Starmerella scarabaei f.a., sp. nov., four yeast species isolated from scarab beetles. Int J Syst Evol Microbiol 2017; 67:1600–1606 [View Article][PubMed]
    [Google Scholar]
  11. Liu XJ, Yi ZH, Ren YC, Li Y, Hui FL. Five novel species in the Lodderomyces clade associated with insects. Int J Syst Evol Microbiol 2016; 66:4881–4889 [View Article][PubMed]
    [Google Scholar]
  12. Ren YC, Liu XJ, Yi ZH, Hui FL. Nematodospora anomalae sp. nov., a novel and d-xylose-fermenting yeast species in the Lodderomyces clade. Int J Syst Evol Microbiol 2016; 66:4046–4050 [View Article][PubMed]
    [Google Scholar]
  13. Liu XJ, Wang Y, Ren YC, Hui FL. Wickerhamiella brachini f.a., sp. nov., Wickerhamiella pterostichi f.a., sp. nov. and Wickerhamiella qilinensis f.a., sp. nov., three yeast species isolated from insects. Int J Syst Evol Microbiol 2016; 66:3995–4001 [View Article][PubMed]
    [Google Scholar]
  14. Zhu XF, Zhang DP, Yang S, Zhang QW. Candida xinjiangensis sp. nov., a new anamorphic yeast species isolated from Scolytus scheryrewi Semenov in China. Arch Microbiol 2017; 199383:377
    [Google Scholar]
  15. Alimadadi N, Soudi MR, Wang SA, Wang QM, Talebpour Z et al. Starmerella orientalis f.a., sp. nov., an ascomycetous yeast species isolated from flowers. Int J Syst Evol Microbiol 2016; 66:1476–1481 [View Article][PubMed]
    [Google Scholar]
  16. Polburee P, Lertwattanasakul N, Limtong P, Groenewald M, Limtong S. Nakazawaea todaengensis f.a., sp. nov., a yeast isolated from a peat swamp forest in Thailand. Int J Syst Evol Microbiol 2017; 67:2377–2382 [View Article][PubMed]
    [Google Scholar]
  17. Jindamorakot S, Am-In S, Kaewwichian R, Limtong S. Yamadazyma insecticola f.a., sp. nov. and Yamadazyma epiphylla f.a., sp. nov., two novel yeast species. Int J Syst Evol Microbiol 2015; 65:1290–1296 [View Article][PubMed]
    [Google Scholar]
  18. Surussawadee J, Khunnamwong P, Srisuk N, Limtong S. Papiliotrema siamense f.a., sp. nov., a yeast species isolated from plant leaves. Int J Syst Evol Microbiol 2014; 64:3058–3062 [View Article][PubMed]
    [Google Scholar]
  19. Polburee P, Yongmanitchai W, Ohashi T, Fujiyama K, Limtong S. Barnettozyma siamensis f.a., sp. nov., a lipid-accumulating ascomycete yeast species. Int J Syst Evol Microbiol 2014; 64:3053–3057 [View Article][PubMed]
    [Google Scholar]
  20. Kaewwichian R, Limtong S. Nakazawaea siamensis f.a., sp. nov., a yeast species isolated from phylloplane. Int J Syst Evol Microbiol 2014; 64:266–270 [View Article][PubMed]
    [Google Scholar]
  21. Junyapate K, Jindamorakot S, Limtong S. Yamadazyma ubonensis f.a., sp. nov., a novel xylitol-producing yeast species isolated in Thailand. Antonie van Leeuwenhoek 2014; 105:471–480 [View Article][PubMed]
    [Google Scholar]
  22. Groenewald M, Robert V, Smith MT. The value of the D1/D2 and internal transcribed spacers (ITS) domains for the identification of yeast species belonging to the genus Yamadazyma . Persoonia 2011; 26:40–46 [View Article][PubMed]
    [Google Scholar]
  23. Groenewald M, Robert V, Smith MT. Five novel Wickerhamomyces- and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. Int J Syst Evol Microbiol 2011; 61:2015–2022 [View Article][PubMed]
    [Google Scholar]
  24. Jacques N, Louis-Mondesir C, Coton M, Coton E, Casaregola S. Two novel Saccharomycopsis species isolated from black olive brines and a tropical plant. Description of Saccharomycopsis olivae f. a., sp. nov. and Saccharomycopsis guyanensis f. a., sp. nov. Reassignment of Candida amapae to Saccharomycopsis amapae f. a., comb. nov., Candida lassenensis to Saccharomycopsis lassenensis f. a., comb. nov. and Arthroascus babjevae to Saccharomycopsis babjevae f. a., comb. nov. Int J Syst Evol Microbiol 2014; 64:2169–2175 [View Article][PubMed]
    [Google Scholar]
  25. Ribeiro LR, Santos ARO, Groenewald M, Smith MTH, Lara CA et al. Description of Hyphopichia buzzinii f.a., sp. nov. and Hyphopichia homilentoma comb. nov., the teleomorph of Candida homilentoma . Antonie van Leeuwenhoek 2017; 110:985–994 [View Article][PubMed]
    [Google Scholar]
  26. Amoikon TLS, Grondin C, Djeni TN, Jacques N, Casaregola S et al. Starmerella reginensis f.a., sp. nov. and Starmerella kourouensis f.a., sp. nov., isolated from flowers in French Guiana. Int J Syst Evol Microbiol 2018; 68:2299–2305
    [Google Scholar]
  27. Simonnet C, Berger F, Gantier JC. Epidemiology of superficial fungal diseases in French Guiana: a three-year retrospective analysis. Med Mycol 2011; 49:608–611 [View Article][PubMed]
    [Google Scholar]
  28. Debourgogne A, Iriart X, Blanchet D, Veron V, Boukhari R et al. Characteristics and specificities of Cryptococcus infections in French Guiana, 1998-2008. Med Mycol 2011; 49:864–871 [View Article][PubMed]
    [Google Scholar]
  29. Kurtzman CP, Robnett CJ, Blackwell M. Description of Teunomyces gen. nov. for the Candida kruisii clade, Suhomyces gen. nov. for the Candida tanzawaensis clade and Suhomyces kilbournensis sp. nov. FEMS Yeast Res 2016; 16: [View Article][PubMed]
    [Google Scholar]
  30. Kurtzman CP. Six new anamorphic ascomycetous yeasts near Candida tanzawaensis . FEMS Yeast Res 2001; 1:177–185 [View Article][PubMed]
    [Google Scholar]
  31. Suh SO, McHugh JV, Blackwell M. Expansion of the Candida tanzawaensis yeast clade: 16 novel Candida species from basidiocarp-feeding beetles. Int J Syst Evol Microbiol 2004; 54:2409–2429 [View Article][PubMed]
    [Google Scholar]
  32. Kijpornyongpan T, Urbina H, Suh SO, Luangsa-Ard J, Aime MC et al. The Suhomyces clade: from single isolate to multiple species to disintegrating sex loci. FEMS Yeast Res 2019; 19: [View Article][PubMed]
    [Google Scholar]
  33. Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli . Gene 1987; 57:267–272[PubMed]
    [Google Scholar]
  34. O'Donnell K. Fusarium and its relativees. In Reynolds DR, Taylor JW. (editors) The Fungal Holomorph: Mitotc, Meiotic and Pleomorphic Speciation in Fungal Systematics Wallingford, UK: CAB International; 1993 pp. 225–233
    [Google Scholar]
  35. White TJ, Bruns TD, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis DH, Sninsky J, White TJ. (editors) PCR Protocols: a Guide to Methods and Applications San Diego: Academic press; 1990 pp. 315–322
    [Google Scholar]
  36. Weiss S, Samson F, Navarro D, Casaregola S. YeastIP: a database for identification and phylogeny of Saccharomycotina yeasts. FEMS Yeast Res 2013; 13:117–125 [View Article][PubMed]
    [Google Scholar]
  37. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  40. Perrière G, Gouy M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 1996; 78:364–369 [View Article][PubMed]
    [Google Scholar]
  41. Yarrow D. Methods for the isolation, maintenance and identification of yeasts. In Kurtzman CP, Fell JW. (editors) The Yeasts, a Taxonomic Study Amsterdam: Elsevier; 1998 pp. 77–100
    [Google Scholar]
  42. Barnett JA, Payne RW, Yarrow D. Yeasts: Characteristics and Identification, 3rd ed. Cambridge: Cambridge University Press; 2000
    [Google Scholar]
  43. Van der Walt JP, Yarrow D. Methods for the isolation, maintenance, classification and identification of yeasts. In Kreger-van Rij NJW. (editor) The Yeasts, A Taxonomic Study, 3rd ed. Amsterdam: Elsevier; 1984
    [Google Scholar]
  44. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 2016; 85:91–105 [View Article][PubMed]
    [Google Scholar]
  45. Jacques N, Mallet S, Casaregola S. Delimitation of the species of the Debaryomyces hansenii complex by intron sequence analysis. Int J Syst Evol Microbiol 2009; 59:1242–1251 [View Article][PubMed]
    [Google Scholar]
  46. Groenewald M, Daniel HM, Robert V, Poot GA, Smith MT. Polyphasic re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus . Persoonia 2008; 21:17–27 [View Article][PubMed]
    [Google Scholar]
  47. Nguyen HV, Gaillardin C, Neuvéglise C. Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D. hansenii, C. famata, D. fabryi, C. flareri (=D. subglobosus) and D. prosopidis: description of D. vietnamensis sp. nov. closely related to D. nepalensis . FEMS Yeast Res 2009; 9:641–662 [View Article][PubMed]
    [Google Scholar]
  48. Cadez N, Smith MTH. Hanseniaspora Zikes (1912). In Kurtzman CP, Boekhout P. (editors) The Yeasts, a Taxonomic Study vol. 2 Amsterdam: Elsevier; 1912 pp. 421–434
    [Google Scholar]
  49. Ho VT, Zhao J, Fleet G. Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 2014; 174: [View Article][PubMed]
    [Google Scholar]
  50. Samagaci L, Ouattara H, Niamké S, Lemaire M. Pichia kudrazevii and Candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Food Res Int 2016; 89:773–780 [View Article][PubMed]
    [Google Scholar]
  51. Miescher Schwenninger S, Freimüller Leischtfeld S, Gantenbein-Demarchi C. High-throughput identification of the microbial biodiversity of cocoa bean fermentation by MALDI-TOF MS. Lett Appl Microbiol 2016; 63:347–355 [View Article][PubMed]
    [Google Scholar]
  52. Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Int J Food Microbiol 2016; 216:69–78 [View Article][PubMed]
    [Google Scholar]
  53. Papalexandratou Z, Lefeber T, Bahrim B, Lee OS, Daniel HM et al. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol 2013; 35:73–85 [View Article][PubMed]
    [Google Scholar]
  54. Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One 2012; 7:e38040 [View Article][PubMed]
    [Google Scholar]
  55. Papalexandratou Z, De Vuyst L. Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Res 2011; 11:564–574 [View Article][PubMed]
    [Google Scholar]
  56. Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F et al. Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol 2011; 77:7698–7714 [View Article][PubMed]
    [Google Scholar]
  57. Nielsen DS, Snitkjaer P, van den Berg F. Investigating the fermentation of cocoa by correlating denaturing gradient gel electrophoresis profiles and near infrared spectra. Int J Food Microbiol 2008; 125:133–140 [View Article][PubMed]
    [Google Scholar]
  58. Meersman E, Steensels J, Struyf N, Paulus T, Saels V et al. Tuning chocolate flavor through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Appl Environ Microbiol 2016; 82:732–746 [View Article][PubMed]
    [Google Scholar]
  59. Daniel HM, Vrancken G, Takrama JF, Camu N, De Vos P et al. Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res 2009; 9:774–783 [View Article][PubMed]
    [Google Scholar]
  60. Jespersen L, Nielsen DS, Hønholt S, Jakobsen M. Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res 2005; 5:441–453 [View Article][PubMed]
    [Google Scholar]
  61. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998; 73:331–371 [View Article][PubMed]
    [Google Scholar]
  62. Suh SO, McHugh JV, Pollock DD, Blackwell M. The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 2005; 109:261–265 [View Article][PubMed]
    [Google Scholar]
  63. Suh SO, Nguyen NH, Blackwell M. A yeast clade near Candida kruisii uncovered: nine novel Candida species associated with basidioma-feeding beetles. Mycol Res 2006; 110:1379–1394 [View Article][PubMed]
    [Google Scholar]
  64. Suh SO, Nguyen NH, Blackwell M. Yeasts isolated from plant-associated beetles and other insects: seven novel Candida species near Candida albicans. FEMS Yeast Res 2008; 8:88–102 [View Article][PubMed]
    [Google Scholar]
  65. Groenewalld M, Lombard L, De Vries M, Lopez AG, Smith M et al. Diversity of yeast species from Dutch garden soil and the description of six novel Ascomycetes. FEMS Yeast Res 2018; 18: [View Article][PubMed]
    [Google Scholar]
  66. Yurkov AM. Yeasts of the soil - obscure but precious. Yeast 2018; 35:369–378 [View Article][PubMed]
    [Google Scholar]
  67. Bing J, Han PJ, Liu WQ, Wang QM, Bai FY. Evidence for a far East Asian origin of lager beer yeast. Curr Biol 2014; 24:R380–R381 [View Article][PubMed]
    [Google Scholar]
  68. Kuehne HA, Murphy HA, Francis CA, Sniegowski PD. Allopatric divergence, secondary contact and genetic isolation in wild yeast populations. Curr Biol 2007; 17:407–411 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003369
Loading
/content/journal/ijsem/10.1099/ijsem.0.003369
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error