1887

Abstract

A novel Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterial strain, designated DHOA04, was isolated from a forest soil sample collected at Dinghushan Biosphere Reserve, Guangdong Province, PR China (112° 31′ E 23° 10′ N). It grew optimally at 28–33 °C and pH 6.5–7.0. Strain DHOA04 contained Q-8 as the major respiratory quinone. Its main fatty acids were C16 : 0, C17 : 0cyclo, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The DNA G+C content of DHOA04 was 63.0 mol%, which is in the range of the genus Paraburkholderia . The average nucleotide identity and digital DNA–DNA hybridization values for the complete genomes were 81.6–83.0 and 25.5–27.0 % between strain DHOA04 and five closely related type strains. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two unidentified aminophospholipids. On the basis of 16S rRNA gene sequence analysis, the strain was found to be closely related to members of the genus Paraburkholderia , but clearly separated from the established species. Phylogenetic analysis based on the 16S rRNA gene sequences using the maximum-likelihood algorithm indicated that strain DHOA04 was most closely related to Paraburkholderia ferrariae NBRC 106233. The phenotypic, chemotaxonomic and phylogenetic data, and genome analysis showed that strain DHOA04 represents a novel species of the genus Paraburkholderia , for which the name Paraburkholderia dinghuensis sp. nov. is proposed. The type strain is DHOA04 (=KCTC 42627=LMG 28839).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003367
2019-03-28
2019-08-19
Loading full text...

Full text loading...

References

  1. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016;66:2836–2846 [CrossRef][PubMed]
    [Google Scholar]
  2. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS et al. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie van Leeuwenhoek 2017;110:727–736 [CrossRef][PubMed]
    [Google Scholar]
  3. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 2018;9:389 [CrossRef][PubMed]
    [Google Scholar]
  4. Gao ZH, Ruan SL, Huang YX, Lv YY, Qiu LH. Paraburkholderia phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from forest soil. Int J Syst Evol Microbiol 2019;69:196–202 [CrossRef][PubMed]
    [Google Scholar]
  5. de Meyer SE, Cnockaert M, Moulin L, Howieson JG, Vandamme P. Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. nov. Int J Syst Evol Microbiol 2018;68:2607–2614 [CrossRef][PubMed]
    [Google Scholar]
  6. Gao ZH, Zhong SF, Lu ZE, Xiao SY, Qiu LH. Paraburkholderia caseinilytica sp. nov., isolated from the pine and broad-leaf mixed forest soil. Int J Syst Evol Microbiol 2018;68:1963–1968 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018;68:1251–1257 [CrossRef][PubMed]
    [Google Scholar]
  8. Choi GM, Im WT. Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 2018;68:310–316 [CrossRef][PubMed]
    [Google Scholar]
  9. Aizawa T, ve NB, Nakajima M, Sunairi M. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2010;60:1152–1157 [CrossRef][PubMed]
    [Google Scholar]
  10. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Santos PE. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 2004;54:1165–1172 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen WM, James EK, Coenye T, Chou JH, Barrios E et al. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 2006;56:1847–1851 [CrossRef][PubMed]
    [Google Scholar]
  12. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY et al. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 2007;57:1055–1059 [CrossRef][PubMed]
    [Google Scholar]
  13. Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de Los Santos P et al. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 2006;56:1931–1937 [CrossRef][PubMed]
    [Google Scholar]
  14. Reis VM, Estrada-de Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 2004;54:2155–2162 [CrossRef][PubMed]
    [Google Scholar]
  15. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  24. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  27. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  31. Otsuka Y, Muramatsu Y, Nakagawa Y, Matsuda M, Nakamura M et al. Burkholderia oxyphila sp. nov., a bacterium isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int J Syst Evol Microbiol 2011;61:249–254 [CrossRef][PubMed]
    [Google Scholar]
  32. Weber CF, King GM. Volcanic soils as sources of novel co-oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a Member of the Burkholderia cepacia complex. Front Microbiol 2017;8:207 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003367
Loading
/content/journal/ijsem/10.1099/ijsem.0.003367
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error