1887

Abstract

A novel aerobic, Gram-stain-negative, non-motile and rod-shaped bacterium, designated strain U0301, was isolated from a marine sediment sample in Weihai, China. This strain grew optimally at 33 °C, pH 7.5 and in the presence of 2.0–3.0 % (w/v) NaCl. Strain U0301 shared pairwise 16S rRNA gene sequence similarities of 95.5, 95.4, 95.2 and 95.0 % to Parahaliea aestuarii S2-26, Halioglobus pacificus KCTC 23430, Halioglobus lutimaris HF004 and Halioglobus japonicus KCTC 23429, respectively. Phylogenetic analysis based on the 16S rRNA gene sequences demonstrated that U0301 formed a tight phylogenetic lineage with type strains of H. pacificus and H. japonicus . The percentage of conserved protein values of strain U0301 as compared with H. japonicus KCTC 23429and P arahaliea mediterranea 7SM29 were 62.5 and 58.0 %, respectively. The ANI values of strain U0301 with H. japonicus KCTC 23429 and P. mediterranea 7SM29 were 78.2 and 75.3 %, respectively. Both metrics of genome comparison suggested that strain U0301 showed higher homology with the genus Halioglobus than the genus Parahaliea . The strain contained ubiquinone 8 as the sole respiratory quinone. The major fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C17 : 1ω8c. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 61.7 mol%. Considering the phenotypic characteristics, chemotaxonomic data and phylogenetic analysis comprehensively, strain U0301 should represent a novel species of the genus Halioglobus , for which the name of Halioglobus sediminis sp. nov. is proposed. The type strain is U0301 (=KCTC 62082=MCCC 1H00234).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003366
2019-03-25
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/6/1601.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003366&mimeType=html&fmt=ahah

References

  1. Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:1–17 [View Article][PubMed]
    [Google Scholar]
  2. Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V. Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring. Arch Microbiol 2011; 193:573–582 [View Article][PubMed]
    [Google Scholar]
  3. Spring S, Lünsdorf H, Fuchs BM, Tindall BJ. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 2009; 4:e486623 [View Article][PubMed]
    [Google Scholar]
  4. Urios L, Intertaglia L, Lesongeur F, Lebaron P. Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 2008; 58:1233–1237 [View Article][PubMed]
    [Google Scholar]
  5. Lin CY, Zhang XY, Liu A, Liu C, Song XY et al. Haliea atlantica sp. nov., isolated from seawater, transfer of Haliea mediterranea to Parahaliea gen. nov. as Parahaliea mediterranea comb. nov. and emended description of the genus Haliea . Int J Syst Evol Microbiol 2015; 65:3413–3418 [View Article][PubMed]
    [Google Scholar]
  6. Park S, Yoshizawa S, Inomata K, Kogure K, Yokota A. Halioglobus japonicus gen. nov., sp. nov. and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 2012; 62:1784–1789 [View Article][PubMed]
    [Google Scholar]
  7. Spring S, Riedel T, Spröer C, Yan S, Harder J et al. Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans . BMC Microbiol 2013; 13:118–139 [View Article][PubMed]
    [Google Scholar]
  8. Konkit M, Kim JH, Kim W. Marimicrobium arenosum gen. nov., sp. nov., a moderately halophilic bacterium isolated from sea sand. Int J Syst Evol Microbiol 2016; 66:856–861 [View Article][PubMed]
    [Google Scholar]
  9. Shi MJ, Wang C, Wang XT, Du ZJ. Halioglobus lutimaris sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2018; 68:876–880 [View Article][PubMed]
    [Google Scholar]
  10. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [View Article][PubMed]
    [Google Scholar]
  11. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  16. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  20. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Micr 2002; 52:1049–1070
    [Google Scholar]
  21. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  22. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [View Article][PubMed]
    [Google Scholar]
  23. Ye MQ, Wang XT, Zhang J, Chen GJ, Du ZJ et al. Algoriphagus formosus sp. nov., isolated from coastal sediment. Antonie van Leeuwenhoek 2018; 111:913–920 [View Article][PubMed]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  26. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1988; 19:161–207
    [Google Scholar]
  27. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003366
Loading
/content/journal/ijsem/10.1099/ijsem.0.003366
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error