1887

Abstract

Strain HBUAS52074 is a Gram-positive staining, aerobic bacterium that was isolated from Zha-Chili, a traditional fermented food made in China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HBUAS52074 is a member of the genus and closely related to DSM 16982 (98.9 %), DSM 28069 (98.8 %), NBRC 1095009 (98.6 %), JCM 17355 (98.5 %), KCTC 3681 (98.5 %), NBRC 112868 (98.5 %) and LMG 23699 (98.4 %). The DNA G+C content is 36.3 mol%. The major cellular fatty acids are C (28.2 %), Cω9 (30.5 %) and summed feature 7 (Cω6, and/or Cω7; 14.9 %). Average nucleotide identity and DNA–DNA hybridization (GGDC) values based on genomic comparisons between HBUAS52074 and related type species showed that the bacterium was significantly different from its closest relatives. Using polyphasic taxonomic analysis, we have shown that strain HBUAS52074 is a new species in the genus , for which we propose the name sp. nov. The type strain is HBUAS52074 (=GDMCC 1.1417=KCTC 21106).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003362
2019-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2196.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003362&mimeType=html&fmt=ahah

References

  1. Teusink B, Molenaar D. Systems biology of lactic acid bacteria: For food and thought. Curr Opin Syst Biol 2017; 6:7–13 [View Article]
    [Google Scholar]
  2. Blagden TD, Gilliland SE. Reduction of levels of volatile components associated with the “Beany” flavor in soymilk by Lactobacilli and Streptococci . J Food Sci 2005; 70:M186–M189 [View Article]
    [Google Scholar]
  3. McFeeters RF. Fermentation microorganisms and flavor changes in fermented foods. J Food Sci 2004; 69:FMS35–FMS37 [View Article]
    [Google Scholar]
  4. MacOri G, Cotter PD. Novel insights into the microbiology of fermented dairy foods. Curr Opin Biotechnol 2018; 49:172–178 [View Article][PubMed]
    [Google Scholar]
  5. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 2017; 44:94–102 [View Article][PubMed]
    [Google Scholar]
  6. Cappello MS, Zapparoli G, Logrieco A, Bartowsky EJ. Linking wine lactic acid bacteria diversity with wine aroma and flavour. Int J Food Microbiol 2017; 243:16–27 [View Article][PubMed]
    [Google Scholar]
  7. Kavitake D, Kandasamy S, Devi PB, Shetty PH. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review. Food Biosci 2018; 21:34–44 [View Article]
    [Google Scholar]
  8. Welman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 2003; 21:269–274 [View Article][PubMed]
    [Google Scholar]
  9. Goyal R, Dhingra H. Isolation and identification of genus Lactobacillus from different curd samples. Biosci Biotechnol Res Asia 2010; 7:907–912
    [Google Scholar]
  10. Beijerinck MW. Sur les ferments lactiques de l’industrie. Archiv Néerlandaises des Sciences Exactes et Naturelles 1901; 6:212–243
    [Google Scholar]
  11. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  12. Liu S-N, Han Y, Zhou Z-J, Zhou ZJ. Lactic acid bacteria in traditional fermented Chinese foods. Food Res Int 2011; 44:643–651
    [Google Scholar]
  13. Liu M, Nauta A, Francke C, Siezen RJ. Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 2008; 74:4590–4600 [View Article][PubMed]
    [Google Scholar]
  14. Jcd M, Rogosa M, Sharpe ME. A medium for the cultivation of Lactobacilli . J Appl Microbiol 2010; 23:130–135
    [Google Scholar]
  15. Murray RGE, Doetsch RN, Robinow F. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krig NR. (editors) Methods for Generaland Molecular Bacteriology Washington, DC: American Society Microbiol; 1994 pp. 21–41
    [Google Scholar]
  16. Handley PS, Carter PL, Wyatt JE, Hesketh LM. Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect Immun 1985; 47:217–227[PubMed]
    [Google Scholar]
  17. Oberg CJ, Oberg TS, Culumber MD, Ortakci F, Broadbent JR et al. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese. Int J Syst Evol Microbiol 2016; 66:158–164 [View Article][PubMed]
    [Google Scholar]
  18. Barer MR, Marsh PJ. Rapid cytochemical demonstration of cytochrome oxidase activity in pathogenic bacteria. J Clin Pathol 1992; 45:487–489 [View Article][PubMed]
    [Google Scholar]
  19. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580[PubMed]
    [Google Scholar]
  20. Tohno M, Tanizawa Y, Irisawa T, Masuda T, Sakamoto M et al. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage. Int J Syst Evol Microbiol 2017; 67:3639–3644 [View Article][PubMed]
    [Google Scholar]
  21. da X, Jiang F, Chang X, Ren L, Qiu X et al. Pedobacter ardleyensis sp. nov., isolated from soil of the Ardley Island, South Shetland Islands in Antarctica. Int J Syst Evol Microbiol 2015; 65:3841–3846
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  23. Mve-Obiang A, Mestdagh M, Portaels F. DNA isolation from chloroform/methanol-treated mycobacterial cells without lysozyme and proteinase K. Biotechniques 2001; 30:272–276 [View Article][PubMed]
    [Google Scholar]
  24. Sakamoto M, Takeuchi Y, Umeda M, Ishikawa I, Benno Y. Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol 2003; 52:79–89 [View Article][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  28. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  29. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  30. Li R, Li Y, Fang X, Yang H, Wang J et al. SNP detection for massively parallel whole-genome resequencing. Genome Res 2009; 19:1124–1132 [View Article][PubMed]
    [Google Scholar]
  31. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM et al. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008; 9:386 [View Article][PubMed]
    [Google Scholar]
  32. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–D269 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Christensen H, Kuhnert P, Busse HJ, Frederiksen WC, Bisgaard M. Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. Int J Syst Evol Microbiol 2007; 57:166–178 [View Article][PubMed]
    [Google Scholar]
  35. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article][PubMed]
    [Google Scholar]
  36. Gunsalus IC, Horecker BL, Wood WA. Pathways of carbohydrate metabolism in microorganisms. Bacteriol Rev 1955; 19:79[PubMed]
    [Google Scholar]
  37. Romano AH, Conway T. Evolution of carbohydrate metabolic pathways. Res Microbiol 1996; 147:448–455 [View Article][PubMed]
    [Google Scholar]
  38. Rimmele M, Boos W. Trehalose-6-phosphate hydrolase of Escherichia coli . J Bacteriol 1994; 176:5654–5664 [View Article][PubMed]
    [Google Scholar]
  39. Ronimus RS, Morgan HW. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 2003; 1:199–221 [View Article][PubMed]
    [Google Scholar]
  40. Wu Q, Shah NP. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods. Food Microbiol 2017; 62:178–187 [View Article][PubMed]
    [Google Scholar]
  41. Kowalczyk M, Cocaign-Bousquet M, Loubiere P, Bardowski J. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403. Arch Microbiol 2008; 189:187–196 [View Article][PubMed]
    [Google Scholar]
  42. Frey PA. The leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 1996; 10:461–470 [View Article][PubMed]
    [Google Scholar]
  43. Heo J, Saitou S, Tamura T, Cho H, Kim JS et al. Lactobacilus nuruki sp. nov., isolated from Nuruk, a Korean fermentation starter. Int J Syst Evol Microbiol 2018; 68:3273–3278 [View Article][PubMed]
    [Google Scholar]
  44. Chen YS, Wang LT, Liao YJ, Lan YS, Chang CH et al. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits. Int J Syst Evol Microbiol 2017; 67:5144–5149 [View Article][PubMed]
    [Google Scholar]
  45. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013; 63:4094–4099 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003362
Loading
/content/journal/ijsem/10.1099/ijsem.0.003362
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error