1887

Abstract

Two aerobic, Gram-stain-negative, non-motile, rod-shaped bacterial strains, designated as DHOA06 and 4 M-K27, were isolated from soil samples collected from the forest of Dinghushan Biosphere Reserve, Guangdong Province, PR China (112° 31′ E 23° 10′ N). Strains DHOA06 and 4 M-K27 grew at pH 4.5–7.0 (optimum, pH 5.0–6.0) and pH 4.5–6.5 (pH 6.0), respectively. Both strains grew at 12–37 °C (optimum, 28 °C) and NaCl levels up to 1.0 % (optimum 0 %, w/v). Phylogenetic analysis based on both 16S rRNA gene sequences and the concatenated partial atpD, gyrB andlepA gene sequences showed that strains DHOA06 and 4 M-K27 formed two isolated clades with members of the genus Dyella, but they each occupied a distinctive position within the genus. Strains DHOA06 and 4 M-K27 showed the highest 16S rRNA gene sequence similarities to Dyellacaseinilytica DHOB09 (98.7 %) and Dyellaacidisoli 4M-Z03 (98.8 %), respectively. DNA–DNA hybridization values of strains DHOA06/DHOB09 and 4 M-K27/4M-Z03 were 27.4±2.4 % and 38.8±1.0 %, respectively. Ubiquinone-8 was the only respiratory quinone detected in both strains. Their major fatty acids consisted of iso-C15 : 0, iso-C16 : 0 and iso-C17 : 1 ω9c, and strain DHOA06 had iso-C17 : 0 in addition. Their polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid, one unidentified phospholipid and two unidentified aminolipids, and strain DHOA06 had phosphatidylmethylethanolamine and one unidentified lipid in addition. The DNA G+C contents of strains DHOA06 and 4 M-K27 were 59.1 and 61.7 mol%, respectively. Based on the above results, we propose that strains DHOA06 and 4 M-K27 represent two novel species of the genus Dyella , namely Dyelladinghuensis sp. nov. (type strain DHOA06 = KCTC 52129=NBRC 111978) and Dyellachoica sp. nov. (type strain 4 M-K27=GDMCC 1.1189=LMG 30267).

Keyword(s): choica , dinghuensis , Dyella , phylogeny and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003356
2019-03-22
2019-08-25
Loading full text...

Full text loading...

References

  1. Xie CH, Yokota A. Dyella japonica gen. nov., sp. nov., a gamma-proteobacterium isolated from soil. Int J Syst Evol Microbiol 2005;55:753–756 [CrossRef][PubMed]
    [Google Scholar]
  2. An DS, Im WT, Yang HC, Yang DC, Lee ST. Dyella koreensis sp. nov., a beta-glucosidase-producing bacterium. Int J Syst Evol Microbiol 2005;55:1625–1628 [CrossRef][PubMed]
    [Google Scholar]
  3. Jung HM, Ten LN, Kim KH, An DS, Im WT et al. Dyella ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2009;59:460–465 [CrossRef][PubMed]
    [Google Scholar]
  4. Lee DW, Lee SD. Dyella marensis sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 2009;59:1397–1400 [CrossRef][PubMed]
    [Google Scholar]
  5. Weon HY, Anandham R, Kim BY, Hong SB, Jeon YA et al. Dyella soli sp. nov. and Dyella terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:1685–1690 [CrossRef][PubMed]
    [Google Scholar]
  6. Anandham R, Kwon SW, Indira Gandhi P, Kim SJ, Weon HY et al. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Int J Syst Evol Microbiol 2011;61:392–398 [CrossRef][PubMed]
    [Google Scholar]
  7. Son HM, Yang JE, Yi EJ, Park Y, Won KH et al. Dyella kyungheensis sp. nov., isolated from soil of a cornus fruit field. Int J Syst Evol Microbiol 2013;63:3807–3811 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhao F, Guo XQ, Wang P, He LY, Huang Z et al. Dyella jiangningensis sp. nov., a γ-proteobacterium isolated from the surface of potassium-bearing rock. Int J Syst Evol Microbiol 2013;63:3154–3157 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim MS, Hyun DW, Kim JY, Kim S, Bae JW et al. Dyella jejuensis sp. nov., isolated from soil of Hallasan Mountain in Jeju Island. J Microbiol 2014;52:373–377 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen MH, Lv YY, Wang J, Tang L, Qiu LH. Dyella humi sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:4372–4376 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen MH, Xia F, Lv YY, Zhou XY, Qiu LH. Dyella acidisoli sp. nov., D. flagellata sp. nov. and D. nitratireducens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017;67:736–743 [CrossRef][PubMed]
    [Google Scholar]
  12. Tang L, Chen MH, Nie XC, Ma MR, Qiu LH. Dyella lipolytica sp. nov., a lipolytic bacterium isolated from lower subtropical forest soil. Int J Syst Evol Microbiol 2017;67:1235–1240 [CrossRef][PubMed]
    [Google Scholar]
  13. Xia F, Chen MH, Lv YY, Zhang HY, Qiu LH. Dyella caseinilytica sp. nov., Dyella flava sp. nov. and Dyella mobilis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017;67:3237–3245 [CrossRef][PubMed]
    [Google Scholar]
  14. Chaudhary DK, Kim J. Dyella agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017;67:4246–4252 [CrossRef][PubMed]
    [Google Scholar]
  15. Cai YM, Gao ZH, Chen MH, Huang YX, Qiu LH. Dyella halodurans sp. nov., isolated from lower subtropical forest soil. Int J Syst Evol Microbiol 2018;68:3237–3242 [CrossRef][PubMed]
    [Google Scholar]
  16. Li QQ, Chen X, Zhou XK, Dong LM, Xiao M et al. Dyella tabacisoli sp. nov., a bacterium isolated from an arable soil sample of Nicotiana tabacum L. Int J Syst Evol Microbiol 2018; [CrossRef][PubMed]
    [Google Scholar]
  17. Gao ZH, Yang Z, Chen MH, Huang ZJ, Qiu LH. Dyella solisilvae sp. nov., isolated from mixed pine and broad-leaved forest soil. Int J Syst Evol Microbiol 2019; [CrossRef][PubMed]
    [Google Scholar]
  18. Zhou XY, Gao ZH, Chen MH, Jian MQ, Qiu LH. Dyella monticola sp. nov. and Dyella psychrodurans sp. nov., isolated from monsoon evergreen broad-leaved forest soil of Dinghu Mountain, China. Int J Syst Evol Microbiol 2019; [CrossRef][PubMed]
    [Google Scholar]
  19. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015;107:467–485 [CrossRef][PubMed]
    [Google Scholar]
  20. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  21. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496 [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  30. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  32. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  33. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  35. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000;50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  36. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  37. Chang HW, Nam YD, Jung MY, Kim KH, Roh SW et al. Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 2008;75:523–530 [CrossRef][PubMed]
    [Google Scholar]
  38. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003356
Loading
/content/journal/ijsem/10.1099/ijsem.0.003356
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error