1887

Abstract

A Gram-stain-negative, short rod-shaped, non-motile, catalase- and oxidase-positive, aerobic bacterium, designated GY0581, was isolated from marine sediment sampled from the Western Pacific Ocean. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain GY0581 belonged to the genus Paracoccus and had the highest levels of sequence similarity to Paracoccus sediminis JCM 18467 (98.2 %). Levels of similarity between strain GY0581 and other Paracoccus species were lower than 97.0 %. The average nucleotide identity and the DNA–DNA hybridization values between strain GY0581 and P. sediminis JCM 18467 were 83.9 and 27 %, respectively, which are below the respective thresholds for species differentiation. The major cellular fatty acid was C18 : 1ω7c (79.5 %). The only isoprenoid quinone was Q-10. The polar lipid pattern indicated the presence of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, three unidentified phospholipids, three unidentified aminolipids, one unidentified glycolipid and two unidentified lipids. The DNA G+C content of strain GY0581 was 65.6 mol%. On the basis of polyphasic characterization, it is concluded that strain GY0581 represents a novel species of the genus Paracoccus , for which the name Paracoccus subflavus sp. nov. is proposed. The type strain is GY0581 (=KCTC 42710=MCCC 1A10575).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003344
2019-03-19
2019-08-19
Loading full text...

Full text loading...

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int J Syst Bacteriol 1969;19:375–390 [CrossRef]
    [Google Scholar]
  2. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 1993;43:363–367 [CrossRef][PubMed]
    [Google Scholar]
  3. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 1995;141:1469–1477 [CrossRef][PubMed]
    [Google Scholar]
  4. Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008;58:257–261 [CrossRef][PubMed]
    [Google Scholar]
  5. Sheu SY, Hsieh TY, Young CC, Chen WM. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018;68:2054–2060 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim YO, Park IS, Park S, Nam BH, Kim DG et al. Paracoccus alimentarius sp. nov., isolated from a Korean foodstuff, salted pollack. Int J Syst Evol Microbiol 2018;68:1238–1243 [CrossRef][PubMed]
    [Google Scholar]
  7. Wang YS, Yan ZF, Lin P, Gao W, Yi TH. Paracoccus pueri sp. nov., isolated from Pu'er tea. Antonie van Leeuwenhoek 2018;111:1535–1542 [CrossRef][PubMed]
    [Google Scholar]
  8. Sun LN, Zhang J, Kwon SW, He J, Zhou SG et al. Paracoccus huijuniae sp. nov., an amide pesticide-degrading bacterium isolated from activated sludge of a wastewater biotreatment system. Int J Syst Evol Microbiol 2013;63:1132–1137 [CrossRef][PubMed]
    [Google Scholar]
  9. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual New York: Cold spring harbor laboratory; 1989
    [Google Scholar]
  10. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998;48:187–194 [CrossRef][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  18. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester WA, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note no. 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  21. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  22. Stouthamer AH. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie van Leeuwenhoek 1992;61:1–33 [CrossRef][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  27. Lee M, Woo SG, Park G, Kim MK. Paracoccus caeni sp. nov., isolated from sludge. Int J Syst Evol Microbiol 2011;61:1968–1972 [CrossRef][PubMed]
    [Google Scholar]
  28. Ohara M, Katayama Y, Tsuzaki M, Nakamoto S, Kuraishi H. Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int J Syst Bacteriol 1990;40:292–296 [CrossRef][PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003344
Loading
/content/journal/ijsem/10.1099/ijsem.0.003344
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error