1887

Abstract

A novel bacterium, designated SCSIO 07575, was isolated from a deep-sea hydrothermal sediment sample collected from the western Pacific Ocean. Growth at 65 °C was observed, but not at 70°C or below 37 °C. The optimum conditions for growth were at 55–65 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Strain SCSIO 07575 showed filamentous growth. Unstable formation of white aerial mycelia was observed, which disappeared after several times’ subculture. Abundant substrate mycelia were observed with grape-like spores. No soluble pigment was observed. Phylogenetic analysis of 16S rRNA gene sequences showed that SCSIO 07575 belonged to the family Thermoactinomycetaceae and formed a distinct clade in the phylogenetic tree. The cell-wall peptidoglycan contained meso-diaminopimelic acid. Whole-cell hydrolysates contained ribose, xylose, glucose and galactose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid and two unidentified phospholipids. The predominant menaquinone was MK-7. Major fatty acids were iso-C15 : 0, iso-C17 : 0 and iso-C16 : 0. Based on the whole genome sequence analysis, the genome size was 2 751 094 bp with a DNA G+C value of 57.2 mol%, including one circular chromosome and one plasmid. On the basis of polyphasic data, strain SCSIO 07575 represented a novel species of a new genus within the family Thermoactinomycetaceae , for which the name Staphylospora gen. nov. is proposed with the type species Staphylospora marina sp. nov. and the type strain SCSIO 07575 (=DSM 106793=CGMCC 1.15879).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003339
2019-03-18
2019-09-20
Loading full text...

Full text loading...

References

  1. Yoon JH, Kim IG, Shin YK, Park YH. Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2005;55:395–400 [CrossRef][PubMed]
    [Google Scholar]
  2. Hatayama K, Shoun H, Ueda Y, Nakamura A. Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family 'Thermoactinomycetaceae' isolated from compost. Int J Syst Evol Microbiol 2005;55:2101–2104 [CrossRef][PubMed]
    [Google Scholar]
  3. Matsuo Y, Katsuta A, Matsuda S, Shizuri Y, Yokota A et al. Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov., antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov. Int J Syst Evol Microbiol 2006;56:2837–2842 [CrossRef][PubMed]
    [Google Scholar]
  4. Yassin AF, Hupfer H, Klenk HP, Siering C. Desmospora activa gen. nov., sp. nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. Int J Syst Evol Microbiol 2009;59:454–459 [CrossRef][PubMed]
    [Google Scholar]
  5. von Jan M, Riegger N, Pötter G, Schumann P, Verbarg S et al. Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009. Int J Syst Evol Microbiol 2011;61:2304–2310 [CrossRef][PubMed]
    [Google Scholar]
  6. Li J, Zhang GT, Yang J, Tian XP, Wang FZ et al. Marininema mesophilum gen. nov., sp. nov., a thermoactinomycete isolated from deep sea sediment, and emended description of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 2012;62:1383–1388 [CrossRef][PubMed]
    [Google Scholar]
  7. Park DJ, Dastager SG, Lee JC, Yeo SH, Yoon JH et al. Shimazuella kribbensis gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 2007;57:2660–2664 [CrossRef][PubMed]
    [Google Scholar]
  8. Buss SN, Cole JA, Hannett GE, Nazarian EJ, Nazarian L et al. Hazenella coriacea gen. nov., sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 2013;63:4087–4093 [CrossRef][PubMed]
    [Google Scholar]
  9. Guan X, Liu C, Fang B, Zhao J, Jin P et al. Baia soyae gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae, isolated from soybean root [Glycine max (L.) Merr]. Int J Syst Evol Microbiol 2015;65:3754–3760 [CrossRef][PubMed]
    [Google Scholar]
  10. Hatayama K, Kuno T. Croceifilum oryzae gen. nov., sp. nov., isolated from rice paddy soil. Int J Syst Evol Microbiol 2015;65:4061–4065 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim M, Kim T, Ri S, Jiang F, Chang X et al. Risungbinella pyongyangensis gen. nov., sp. nov., a mesophilic member of the family Thermoactinomycetaceae isolated from an agricultural soil sample. Int J Syst Evol Microbiol 2015;65:2726–2733 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhang YX, Dong C, Biao S. Planifilum yunnanense sp. nov., a thermophilic thermoactinomycete isolated from a hot spring. Int J Syst Evol Microbiol 2007;57:1851–1854 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang Y, Li J, Tian X, Zhang S. Marinithermofilum abyssi gen. nov., sp. nov. and Desmospora profundinema sp. nov., isolated from a deep-sea sediment, and emended description of the genus Desmospora Yassin et al. 2009. Int J Syst Evol Microbiol 2015;65:2622–2629 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhang XM, He J, Zhang DF, Chen W, Jiang Z et al. Marininema halotolerans sp. nov., a novel thermoactinomycete isolated from a sediment sample, and emended description of the genus Marininema Li et al. 2012. Int J Syst Evol Microbiol 2013;63:4562–4567 [CrossRef][PubMed]
    [Google Scholar]
  15. Tsubouchi T, Shimane Y, Mori K, Usui K, Hiraki T et al. Polycladomyces abyssicola gen. nov., sp. nov., a thermophilic filamentous bacterium isolated from hemipelagic sediment. Int J Syst Evol Microbiol 2013;63:1972–1981 [CrossRef][PubMed]
    [Google Scholar]
  16. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  17. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  18. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  19. Locci R. Streptomyces and related genera. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 Baltimore: Williams & Wilkins; 1989; pp.2451–2508
    [Google Scholar]
  20. Williams ST, Goodfellow M, Alderson G. Genus streptomyces waksman and henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey's Manual of Systematic Bacteriologyvol. 4 Baltimore: Williams & Wilkins; 1989; pp.2452–2492
    [Google Scholar]
  21. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  22. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  23. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  24. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496 [CrossRef][PubMed]
    [Google Scholar]
  25. Yu TT, Zhang BH, Yao JC, Tang SK, Zhou EM et al. Lihuaxuella thermophila gen. nov., sp. nov., isolated from a geothermal soil sample in Tengchong, Yunnan, south-west China. Antonie van Leeuwenhoek 2012;102:711–718 [CrossRef][PubMed]
    [Google Scholar]
  26. Lacey J, Cross T. Genus thermoactinomyces tsiklinsky 1899. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 Baltimore: Williams and Wilkins; 1989; pp.2574–2585
    [Google Scholar]
  27. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  28. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009;59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  29. Minnikin DE, Collins MD, Goodfellow M. Fatty Acid and Polar Lipid Composition in the Classification of Cellulomonas, Oerskovia and Related Taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20:1–6
    [Google Scholar]
  32. Lane DJ. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics 1991; pp.115–175
    [Google Scholar]
  33. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:106–425 [CrossRef][PubMed]
    [Google Scholar]
  38. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  39. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  40. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  41. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  42. Yao S, Liu Y, Zhang M, Zhang X, Li H et al. Thermoactinomyces daqus sp. nov., a thermophilic bacterium isolated from high-temperature Daqu. Int J Syst Evol Microbiol 2014;64:206–210 [CrossRef][PubMed]
    [Google Scholar]
  43. Lacey J. Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J Gen Microbiol 1971;66:327–338 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003339
Loading
/content/journal/ijsem/10.1099/ijsem.0.003339
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error