1887

Abstract

A rod-shaped, Gram-staining-negative and orange-pigmented bacterium, designated strain HME9302, was isolated from seawater of the Yellow Sea in the Republic of Korea. The phylogenetic tree based on 16S rRNA gene sequences showed that strain HME9302 formed a lineage within the genus Altererythrobacter , and was most closely related to Altererythrobacter aurantiacus O30 with 96.7 % sequence similarity. The major fatty acids were summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major respiratory quinone was ubiquinone-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and four unidentified lipids. The DNA G+C content was 60.8 mol%. On the basis of the evidence presented in this study, strain HME9302 represents a novel species of the genus Altererythrobacter , for which the name Altererythrobacter maritimus sp. nov. is proposed with the type strain HME9302 (=KCTC 32463=KACC 17617=CECT 8417).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003336
2019-03-11
2019-08-19
Loading full text...

Full text loading...

References

  1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007;57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon JH, Kang KH, Yeo SH, Oh TK. Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005;55:1167–1170 [CrossRef][PubMed]
    [Google Scholar]
  3. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2012;62:28–32 [CrossRef][PubMed]
    [Google Scholar]
  4. Xue H, Piao CG, Guo MW, Wang LF, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2016;66:4543–4548 [CrossRef][PubMed]
    [Google Scholar]
  5. Fidalgo C, Rocha J, Martins R, Proença DN, Morais PV et al. Altererythrobacter halimionae sp. nov. and Altererythrobacter endophyticus sp. nov., two endophytes from the salt marsh plant Halimione portulacoides. Int J Syst Evol Microbiol 2017;67:3057–3062 [CrossRef][PubMed]
    [Google Scholar]
  6. Yuan N, Zeng Y, Feng H, Yu Z, Huang Y. Altererythrobacter xixiisoli sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2017;67:3655–3659 [CrossRef][PubMed]
    [Google Scholar]
  7. Yan ZF, Lin P, Won KH, Yang JE, Li CT et al. Altererythrobacter deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017;67:3806–3811 [CrossRef][PubMed]
    [Google Scholar]
  8. Ma H, Ren H, Huang L, Luo Y. Altererythrobacter flavus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2018;68:2265–2270 [CrossRef][PubMed]
    [Google Scholar]
  9. Dahal RH, Kim J. Altererythrobacter fulvus sp. nov., a novel alkalitolerant alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018;68:1502–1508 [CrossRef][PubMed]
    [Google Scholar]
  10. Park S, Jung YT, Choi SJ, Yoon JH. Altererythrobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017;67:3446–3451 [CrossRef][PubMed]
    [Google Scholar]
  11. Park SC, Baik KS, Choe HN, Lim CH, Kim HJ et al. Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011;61:709–715 [CrossRef][PubMed]
    [Google Scholar]
  12. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64:116–121 [CrossRef][PubMed]
    [Google Scholar]
  13. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011;61:2035–2039 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim JH, Yoon JH, Kim W. Altererythrobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016;66:5424–5429 [CrossRef][PubMed]
    [Google Scholar]
  15. Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2013;63:93–97 [CrossRef][PubMed]
    [Google Scholar]
  16. Park S, Jung YT, Park JM, Yoon JH. Altererythrobacter confluentis sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2016;66:4002–4008 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008;58:839–844 [CrossRef][PubMed]
    [Google Scholar]
  18. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016;66:2491–2496 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhao Q, Li HR, Han QQ, He AL, Nie CY et al. Altererythrobacter soli sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2017;67:454–459 [CrossRef][PubMed]
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.125–175
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  22. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism, 3rd ed. New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  28. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E, Goebel BM. Taxonomic note: a place for dna-dna reassociation and 16s rRna sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  30. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921;6:395–397[PubMed]
    [Google Scholar]
  31. Wang B, Tan T, Shao Z. Roseovarius pacificus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2009;59:1116–1121 [CrossRef][PubMed]
    [Google Scholar]
  32. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  33. CLSI Performance Standards for Antimicrobial Disk Susceptibility Testing: Approved Standard, 11th ed. CLSI Document M02-A11 PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  36. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. (editor) Methods in Microbiologyvol. 18 New York: Academic Press; 1985; pp.329–366
    [Google Scholar]
  37. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  38. Zhang G, Yang Y, Wang L. Altererythrobacter aurantiacus sp. nov., isolated from deep-sea sediment. Antonie van Leeuwenhoek 2016;109:1245–1251 [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon BJ, Lee DH, Oh DC. Erythrobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013;63:1421–1426 [CrossRef][PubMed]
    [Google Scholar]
  40. Yang Y, Zhang G, Sun Z, Cheung MK, Huang C et al. Altererythrobacter oceanensis sp. nov., isolated from the Western Pacific. Antonie van Leeuwenhoek 2014;106:1191–1198 [CrossRef][PubMed]
    [Google Scholar]
  41. Yoon JH, Oh TK, Park YH. Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005;55:71–75 [CrossRef][PubMed]
    [Google Scholar]
  42. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007;57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003336
Loading
/content/journal/ijsem/10.1099/ijsem.0.003336
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error