1887

Abstract

A novel Gram-negative, aerobic, rod-shaped bacterium, designated NS26, was isolated from a sediment sample collected from Taihu Lake in China. Colonies were orange, circular, smooth and neat-edged on Reasoner’s 2A agar. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain NS26 belonged to the genus Brevundimonas and had the closest relationship with Brevundimonas halotolerans DSM 24448 (96.9 %). It grew at 20–37 °C (optimum, 28 °C), pH 5.5–10.5 (pH 7.0) and without NaCl. The major isoprenoid quinone was Q-10. The dominant cellular fatty acids were C18 : 1ω7c, C16 : 0 and C18 : 1ω7c 11-methyl. The polar lipid profile comprised 1,2-diacyl-3-O-(6-phosphatidyl-α-d-glucopyranosyl) glycerol, 1,2-di-O-acyl-3-O-α-d-glycopyranuronosyl glycerol, sulfoquinovosyl diacylglycerol, 1,2-di-O-acyl-3-O-[d-glycopyranosyl-(1→4)-α-d-glucopyranuronosyl] glycerol and phosphatidylglycerol. The G+C content of genomic DNA was 68.4 mol%. The average nucleotide identity value between strain NS26 and B. halotolerans DSM 24448 was 75.6 %. Based on the polyphasic taxonomic study, strain NS26 is suggested to be a novel species, for which the name Brevundimonas lutea sp. nov. is proposed. The type strain is NS26 (=CGMCC 1.13680=NBRC 113554).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003330
2019-03-06
2019-08-19
Loading full text...

Full text loading...

References

  1. Segers P, Vancanneyt M, Pot B, Torck U, Hoste B et al. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 1994;44:499–510 [CrossRef][PubMed]
    [Google Scholar]
  2. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Microbiol 2004;54:819–825 [CrossRef][PubMed]
    [Google Scholar]
  3. Tsubouchi T, Koyama S, Mori K, Shimane Y, Usui K et al. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 2014;64:3709–3716 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon JH, Kang SJ, Lee JS, Oh HW, Oh TK et al. Brevundimonas lenta sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57:2236–2240 [CrossRef][PubMed]
    [Google Scholar]
  5. Pham VHT, Jeong S, Chung S, Kim J. Brevundimonas albigilva sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:1144–1150 [CrossRef][PubMed]
    [Google Scholar]
  6. Dahal RH, Kim J. Brevundimonas humi sp. nov., an alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018;68:709–714 [CrossRef][PubMed]
    [Google Scholar]
  7. Ryu SH, Park M, Lee JR, Yun PY, Jeon CO. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol 2007;57:1561–1565 [CrossRef][PubMed]
    [Google Scholar]
  8. Menéndez E, Pérez-Yepes J, Carro L, Fernández-Pascual M, Ramírez-Bahena MH et al. Brevundimonas canariensis sp. nov., isolated from roots of Triticum aestivum. Int J Syst Evol Microbiol 2017;67:969–973 [CrossRef][PubMed]
    [Google Scholar]
  9. Fritz I, Strömpl C, Nikitin DI, Lysenko AM, Abraham WR. Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. Int J Syst Evol Microbiol 2005;55:479–486 [CrossRef][PubMed]
    [Google Scholar]
  10. Tóth E, Szuróczki S, Kéki Z, Kosztik J, Makk J et al. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 2017;67:1033–1038 [CrossRef][PubMed]
    [Google Scholar]
  11. Qu JH, Zhang LJ, Fu YH, Li XD, Li HF et al. A novel genus of the class Actinobacteria, Longivirga aurantiaca gen. nov., sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2018;68:942–946 [CrossRef][PubMed]
    [Google Scholar]
  12. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  13. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  14. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703–704 [CrossRef][PubMed]
    [Google Scholar]
  15. Qu JH, Yuan HL, Li HF, Deng CP. Flavobacterium cauense sp. nov., isolated from sediment of a eutrophic lake. Int J Syst Evol Microbiol 2009;59:2666–2669 [CrossRef][PubMed]
    [Google Scholar]
  16. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 1966;36:493–496 [CrossRef]
    [Google Scholar]
  17. Moreno C, Romero J, Espejo RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 2002;148:1233–1239 [CrossRef][PubMed]
    [Google Scholar]
  18. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004;32:W20–W25 [CrossRef]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  26. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 1995;11:217–218 [CrossRef][PubMed]
    [Google Scholar]
  27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  29. Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F et al. Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods 2010;7:485–486 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Abraham WR, Estrela AB, Nikitin DI, Smit J, Vancanneyt M. Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. Int J Syst Evol Microbiol 2010;60:1837–1843 [CrossRef][PubMed]
    [Google Scholar]
  33. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  34. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Tsubouchi T, Shimane Y, Usui K, Shimamura S, Mori K et al. Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment. Int J Syst Evol Microbiol 2013;63:1987–1994 [CrossRef][PubMed]
    [Google Scholar]
  37. Yoon JH, Kang SJ, Oh HW, Lee JS, Oh TK. Brevundimonas kwangchunensis sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 2006;56:613–617 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003330
Loading
/content/journal/ijsem/10.1099/ijsem.0.003330
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error