1887

Abstract

A Gram-stain-positive, aerobic, motile, non-spore-forming and rod-shaped actinobacterium, designated strain 4Q3S-7, was isolated from a piece of surface-sterilized bark of Kandelia candel collected at the Cotai Ecological Zone in Macao, China. Colonies were yellowish white, circular, smooth and convex. The 16S rRNA gene sequence of strain 4Q3S-7 exhibited highest similarities to Marmoricola ginsengisoli Gsoil 097 (97.6 %), Marmoricola solisilvae KIS18-7 (97.6 %) and Marmoricola pocheonensis Gsoil 818 (97.3 %). Phylogenetic analysis showed that strain 4Q3S-7 clustered with species of the genus Marmoricola and was clearly affiliated to the genus Marmoricola . Genomic analyses, including average nucleotide identity and DNA–DNA hybridization, clearly separated strain 4Q3S-7 from M. ginsengisoli Gsoil 097, M. solisilvae KIS18-7 and M. pocheonensis Gsoil 818 with values below the thresholds for species delineation. Strain 4Q3S-7 had ll-2,6-diaminopimelic acid as the diagnostic diamino acid in the cell wall. The major fatty acids (>10 % of total fatty acids) were C18 : 0 10-methyl (TBSA), C18 : 1 ω9c, iso-C16 : 0 and iso-C16 : 0 2-OH. The predominant menaquinone was MK-8(H4). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol and an unidentified phospholipid. The DNA G+C content of strain 4Q3S-7 was 72.0 mol% (draft genome sequence). Based on its phylogenetic, phenotypic and chemotaxonomic features, strain 4Q3S-7 is considered to represent a novel species of the genus Marmoricola , for which the name Marmoricola mangrovicus sp. nov. is proposed. The type strain is 4Q3S-7 (=KCTC 39790=CGMCC 4.7424).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003326
2019-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1343.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003326&mimeType=html&fmt=ahah

References

  1. Nesterenko OA, Kvasnikov EI, Nogina TM. Nocardioidaceae fam. nov., a new family of the order Actinomycetales Buchanan 1917. Mikrobiol Zh 1985; 47:3–12
    [Google Scholar]
  2. Urzì C, Salamone P, Schumann P, Stackebrandt E. Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 2000; 50 Pt 2:529–536 [View Article][PubMed]
    [Google Scholar]
  3. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Marmoricola bigeumensis sp. nov., a member of the family Nocardioidaceae. Int J Syst Evol Microbiol 2008; 58:1060–1063 [View Article][PubMed]
    [Google Scholar]
  4. Lee DW, Lee SD. Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 2010; 60:2135–2139 [View Article][PubMed]
    [Google Scholar]
  5. Kim SJ, Lim JM, Hamada M, Ahn JH, Weon HY et al. Marmoricola solisilvae sp. nov. and Marmoricola terrae sp. nov., isolated from soil and emended description of the genus Marmoricola. Int J Syst Evol Microbiol 2015; 65:1825–1830 [View Article][PubMed]
    [Google Scholar]
  6. Schumann P, Zhang DC, França L, Margesin R. Marmoricola silvestris sp. nov., a novel actinobacterium isolated from alpine forest soil. Int J Syst Evol Microbiol 2018; 68:1313–1318 [View Article][PubMed]
    [Google Scholar]
  7. Jiang ZK, Pan Z, Li FN, Li XJ, Liu SW et al. Marmoricola endophyticus sp. nov., an endophytic actinobacterium isolated from Thespesia populnea. Int J Syst Evol Microbiol 2017; 67:4379–4384 [View Article][PubMed]
    [Google Scholar]
  8. Lee HY, Liu Q, Kang MS, Kim SK, Lee SY et al. Marmoricola ginsengisoli sp. nov. and Marmoricola pocheonensis sp. nov. isolated from a ginseng-cultivating field. Int J Syst Evol Microbiol 2016; 66:1996–2001 [View Article][PubMed]
    [Google Scholar]
  9. Lee SD. Marmoricola aequoreus sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2007; 57:1391–1395 [View Article][PubMed]
    [Google Scholar]
  10. Lee SD, Lee DW, Ko YH. Marmoricola korecus sp. nov. Int J Syst Evol Microbiol 2011; 61:1628–1631 [View Article][PubMed]
    [Google Scholar]
  11. de Menezes CB, Tonin MF, Silva LJ, de Souza WR, Parma M et al. Marmoricola aquaticus sp. nov., an actinomycete isolated from a marine sponge. Int J Syst Evol Microbiol 2015; 65:2286–2291 [View Article][PubMed]
    [Google Scholar]
  12. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 2008; 58:2525–2528 [View Article][PubMed]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  15. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  16. Li FN, Tuo L, Pan Z, Guo M, Lee SM et al. Aureimonas endophytica sp. nov., a novel endophytic bacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 2017; 67:2934–2940 [View Article][PubMed]
    [Google Scholar]
  17. Swindell SR, Plasterer TN. SEQMAN. Contig assembly. Methods Mol Biol 1997; 70:75–89[PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  25. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  27. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  28. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  29. Mikheenko A, Valin G, Prjibelski A, Saveliev V, Gurevich A. Icarus: visualizer for de novo assembly evaluation. Bioinformatics 2016; 32:3321–3323 [View Article][PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  31. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  33. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article][PubMed]
    [Google Scholar]
  34. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  35. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  36. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  37. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  40. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  41. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Li FN, Tuo L, Lee SM, Jin T, Liao S et al. Amnibacterium endophyticum sp. nov., an endophytic actinobacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 2018; 68:1327–1332 [View Article][PubMed]
    [Google Scholar]
  43. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003326
Loading
/content/journal/ijsem/10.1099/ijsem.0.003326
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error