1887

Abstract

A Gram-stain-negative, facultatively aerobic bacterial strain, designated DB1506, of the family Acetobacteraceae , was isolated from an air-conditioning system in the Republic of Korea. Colonies were pink- to rosy-coloured and cells were non-motile cocci with catalase- and oxidase-positive activities. Growth of strain DB1506 was observed at 20–37 °C (optimum, 30 °C), pH 5.5–8.5 (pH 7.0) and in the presence of 0–0.5 % (w/v) NaCl (0 %). Strain DB1506 contained summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c) and C18 : 1 2-OH as major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipids, unidentified aminolipids and unidentified polar lipids were detected as major polar lipids. The G+C content of the genomic DNA calculated from the whole genome sequence was 72.5 mol%. Strain DB1506 was most closely related to Paracraurococcus ruber NS89, Dankookia rubra WS-10 and Siccirubricoccus deserti SYSU D8009 with 16S rRNA gene sequence similarities of 96.01, 95.88 and 95.44 %, respectively, but strain DB1506 formed a clearly distinct phylogenic lineage from them within the family Acetobacteraceae . On the basis of phenotypic, chemotaxonomic and molecular properties, strain DB1506 represents a novel species of a new genus within the family Acetobacteraceae , for which the name Roseicella frigidaeris gen. nov., sp. nov. is proposed. The type strain is DB1506 (=KACC 19791=JCM 32945).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003322
2019-02-28
2024-11-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1384.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003322&mimeType=html&fmt=ahah

References

  1. Gillis M, de Ley J. Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 1980; 30:7–27 [View Article]
    [Google Scholar]
  2. Kim KH, Cho GY, Chun BH, Weckx S, Moon JY et al. Acetobacter oryzifermentans sp. nov., isolated from Korean traditional vinegar and reclassification of the type strains of Acetobacter pasteurianus subsp. ascendens (Henneberg 1898) and Acetobacter pasteurianus subsp. paradoxus (Frateur 1950) as Acetobacter ascendens sp. nov., comb. nov. Syst Appl Microbiol 2018; 41:324–332 [View Article][PubMed]
    [Google Scholar]
  3. Kim WH, Kim DH, Kang K, Ahn TY. Dankookia rubra gen. nov., sp. nov., an alphaproteobacterium isolated from sediment of a shallow stream. J Microbiol 2016; 54:420–425 [View Article][PubMed]
    [Google Scholar]
  4. Albuquerque L, Rainey FA, Nobre MF, da Costa MS. Elioraea tepidiphila gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Int J Syst Evol Microbiol 2008; 58:773–778 [View Article][PubMed]
    [Google Scholar]
  5. Margesin R, Zhang DC. Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil. Int J Syst Evol Microbiol 2013; 63:1411–1416 [View Article][PubMed]
    [Google Scholar]
  6. Eder W, Peplies J, Wanner G, Frühling A, Verbarg S et al. Hydrobacter penzbergensis gen. nov., sp. nov., isolated from purified water. Int J Syst Evol Microbiol 2015; 65:920–926 [View Article][PubMed]
    [Google Scholar]
  7. Ramírez-Bahena MH, Tejedor C, Martín I, Velázquez E, Peix A. Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in an acidic soil. Int J Syst Evol Microbiol 2013; 63:1760–1765 [View Article][PubMed]
    [Google Scholar]
  8. Boldareva EN, Turova TP, Kolganova TV, Moskalenko AA, Makhneva ZK et al. [Roseococcus suduntuyensis sp. nov., a new aerobic bacteriochlorophyll A-containing bacterium isolated from a low-mineralized soda lake of Eastern Siberia]. Mikrobiologiia 2009; 78:92–101 [View Article]
    [Google Scholar]
  9. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 1994; 44:427–434 [View Article][PubMed]
    [Google Scholar]
  10. Jin R, Su J, Liu HY, Wei YZ, Li QP et al. Description of Belnapia rosea sp. nov. and emended description of the genus Belnapia Reddy et al. 2006. Int J Syst Evol Microbiol 2012; 62:705–709 [View Article][PubMed]
    [Google Scholar]
  11. Lee Y, Jeon CO. Solitalea longa sp. nov., isolated from freshwater and emended description of the genus Solitalea. Int J Syst Evol Microbiol 2018; 68:2826–2831 [View Article][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  13. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  15. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  16. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  17. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  18. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  20. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–208
    [Google Scholar]
  21. Lakshmi KV, Sasikala C, Takaichi S, Ramana C. Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. Int J Syst Evol Microbiol 2011; 61:1656–1661 [View Article][PubMed]
    [Google Scholar]
  22. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  23. Saitoh S, Suzuki T, Nishimura Y. Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil. Int J Syst Bacteriol 1998; 48:1043–1047 [View Article][PubMed]
    [Google Scholar]
  24. Yang ZW, Salam N, Hua ZS, Liu BB, Han MX et al. Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2017; 67:4862–4867 [View Article][PubMed]
    [Google Scholar]
  25. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31:3275–3283[PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003322
Loading
/content/journal/ijsem/10.1099/ijsem.0.003322
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error