1887

Abstract

A single spore forming actinomycete, designated strain HSS6-8, was isolated from a sample of hot spring soil. The strain had the chemotaxonomic properties consistent with its classification in the genus Micromonospora . The strain was found to have meso-diaminopimelic acid in the cell-wall peptidoglycan. The acyl type of the cell-wall muramic acid was glycolyl. The reducing sugars in the cell hydrolysates were glucose, arabinose, xylose, ribose, mannose, galactose and rhamnose. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphoglycolipid. The major menaquinones were MK-10(H6) and MK-10(H4). The major cellular fatty acids were iso-C16 : 0, anteiso-C17 : 0, C17 : 0 and anteiso-C15 : 0. The G+C content of the genomic DNA was 70.5 mol%. 16S rRNA gene sequence analysis revealed that strain HSS6-8 was closely related to Micromonospora nigra DSM 43818 (98.2 %), Micromonospora eburnea DSM 44814 (98.2 %) and Micromonospora spongicola S3-1 (98.1 %). The physiological and DNA–DNA hybridization data allowed the differentiation of strain HSS6-8 from its related species. Thus, the strain represents a novel species of the genus Micromonospora , for which the name Micromonospora caldifontis sp. nov. is proposed. The type strain is HSS6-8 (=TBRC 8927=JCM 17126).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003321
2019-02-27
2020-01-27
Loading full text...

Full text loading...

References

  1. Boumehira AZ, El-Enshasy HA, Hacène H, Elsayed EA, Aziz R et al. Recent progress on the development of antibiotics from the genus Micromonospora. Biotechnol Bioproc E 2016;21:199–223 [CrossRef]
    [Google Scholar]
  2. Hirsch AM, Valdés M. Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biology and Biochemistry 2010;42:536–542 [CrossRef]
    [Google Scholar]
  3. Ørskov J. Investigations into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard; 1923
    [Google Scholar]
  4. Kuncharoen N, Pittayakhajonwut P, Tanasupawat S. Micromonospora globbae sp. nov., an endophytic actinomycete isolated from roots of Globba winitii C. H. Wright. Int J Syst Evol Microbiol 2018;68:1073–1077 [CrossRef][PubMed]
    [Google Scholar]
  5. Thawai C, Kanchanasin P, Ohkuma M, Kudo T, Tanasupawat S. Identification and antimicrobial activity of Micromonospora strains from Thai peat swamp forest soils. J Appl Pharm Sci 2018;8:119–125
    [Google Scholar]
  6. Qiu D, Ruan J, Huang Y. Selective isolation and rapid identification of members of the genus Micromonospora. Appl Environ Microbiol 2008;74:5593–5597 [CrossRef][PubMed]
    [Google Scholar]
  7. Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N et al. Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 2015;65:3818–3823 [CrossRef][PubMed]
    [Google Scholar]
  8. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 2007;57:2799–2804 [CrossRef][PubMed]
    [Google Scholar]
  9. Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K et al. Micromonospora sediminis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2016;66:3235–3240 [CrossRef][PubMed]
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  11. Thawai C. Pseudonocardia soli sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2018;68:1307–1312 [CrossRef][PubMed]
    [Google Scholar]
  12. Genilloud O. Genus Micromonospora. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 5 New York: Springer; 2012; pp.1035–1056
    [Google Scholar]
  13. Thawai C, Tanasupawat S, Itoh T, Suwanborirux K, Suzuki K et al. Micromonospora eburnea sp. nov., isolated from a Thai peat swamp forest. Int J Syst Evol Microbiol 2005;55:417–422 [CrossRef][PubMed]
    [Google Scholar]
  14. Supong K, Suriyachadkun C, Pittayakhajonwut P, Suwanborirux K, Thawai C. Micromonospora spongicola sp. nov., an actinomycete isolated from a marine sponge in the Gulf of Thailand. J Antibiot 2013;66:505–509 [CrossRef][PubMed]
    [Google Scholar]
  15. Waksman SA. The Actinomycetes. Classification, Identification and Description of Genera and Speciesvol. 2 Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  16. Kelly KL. Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  17. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  18. Williams ST, Cross T. Actinomycetes. In Booth C. (editor) Methods in Microbiologyvol. 4 London: Academic Press; 1971; pp.295–334
    [Google Scholar]
  19. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  20. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  21. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984;30:131–134 [CrossRef]
    [Google Scholar]
  22. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986;123:31–36[PubMed]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  27. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  28. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  29. Tamaoka J. Determination of DNA base composition. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.463–470
    [Google Scholar]
  30. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 2015;65:1456–1461 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  32. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  33. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  34. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  37. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  41. Garcia LC, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010;60:331–337 [CrossRef][PubMed]
    [Google Scholar]
  42. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  43. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977;5:249–260 [CrossRef]
    [Google Scholar]
  44. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics New York: Academic Press; 1985; pp.173–199
    [Google Scholar]
  45. Thawai C. Amycolatopsis rhizosphaerae sp. nov., isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 2018;68:1546–1551 [CrossRef][PubMed]
    [Google Scholar]
  46. Thawai C. Pseudonocardia soli sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2018;68:1307–1312 [CrossRef][PubMed]
    [Google Scholar]
  47. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  48. Kasai H, Tamura T, Harayama S. Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 2000;50:127–134 [CrossRef][PubMed]
    [Google Scholar]
  49. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003321
Loading
/content/journal/ijsem/10.1099/ijsem.0.003321
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error