1887

Abstract

A Gram-stain-negative, rod-shaped, aerobic bacterium, designated M2T2B2, was isolated from fermented bovine products in Suwon, Republic of Korea. The strain displayed growth at 15–45 °C (optimum, 28–30 °C), pH 6.0–10.0 (pH 7.0) and 0–2 % (w/v) NaCl (0 %). Colonies were light pink-coloured, round and convex. The cells were positive for oxidase and weakly positive for catalase. The major fatty acids in whole cells of strain M2T2B2 were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), followed by summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), summed feature 2 (C12 : 0 aldehyde/unidentified 10.928/C14 : 0 3-OH/iso-C16 : 1 I), C16 : 0, C18 : 1 2-OH, C16 : 0 3-OH and C17 : 1 ω6c. The polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, and three unidentified aminolipids. Ubiquinone 10 was the predominant ubiquinone. The DNA G+C content was 68.0 mol%. The strain could fix atmospheric nitrogen, which was evaluated by the acetylene reduction assay. Further, whole genome sequence analysis revealed the presence of a nif gene cluster. Strain M2T2B2 showed the highest 16S rRNA, rpoD and nifH gene sequence similarity to members of the genus Azospirillum , and showed 97.6 % 16S rRNA gene sequence similarity to Azospirillum oryzae COC8. The phenotypic, phylogenetic and genomic analyses support the proposal of strain M2T2B2 as being a novel species of the genus Azospirillum , for which the name Azospirillum ramasamyi sp. nov. is proposed. The type strain is M2T2B2 (=KACC 14063=NBRC 106460).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003320
2019-02-27
2019-10-22
Loading full text...

Full text loading...

References

  1. Leo Daniel Amalraj E, Praveen Kumar G, Mir Hassan Ahmed SK, Abdul R, Kishore N. Microbiological analysis of panchagavya, vermicompost, and FYM and their effect on plant growth promotion of pigeon pea (Cajanus cajan L.) in India. Organic Agriculture 2013;3:23–29 [CrossRef]
    [Google Scholar]
  2. Naik N, Sreenivasa MN. Influence of bacterial isolated from panchagavya on seed germination and seed vigour in wheat. Kar J Agric Sci 2009;22:231–232
    [Google Scholar]
  3. Kantachote D, Kowpong K, Charernjiratrakul W, Pengnoo A. Microbial succession in a fermenting of wild forest noni (Morinda coreia Ham) fruit plus molasses and its role in producing a liquid fertilizer. Electronic J Biotechnology 2009;12:3 [CrossRef]
    [Google Scholar]
  4. Yamada K, Xu H-L. Properties and applications of an organic fertilizer inoculated with effective microorganisms. J Crop Prod 2001;3:255–268 [CrossRef]
    [Google Scholar]
  5. Anandham R, Kwon SW, Weon HY, Kim SJ, Kim YS et al. Larkinella bovis sp. nov., isolated from fermented bovine products, and emended descriptions of the genus Larkinella and of Larkinella insperata Vancanneyt et al. 2006. Int J Syst Evol Microbiol 2011;61:30–34 [CrossRef][PubMed]
    [Google Scholar]
  6. Anandham R, Tamura T, Hamada M, Weon HY, Kim SJ et al. Microbacterium suwonense sp. nov., isolated from cow dung. J Microbiol 2011;49:852–856 [CrossRef][PubMed]
    [Google Scholar]
  7. Weon HY, Anandham R, Tamura T, Hamada M, Kim SJ et al. Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 2012;50:161–165 [CrossRef][PubMed]
    [Google Scholar]
  8. Girija D, Deepa K, Xavier F, Antony I, Shidhi PR. Analysis of cow dung microbiota-A metagenomic approach. Indian J Biotechnol 2013;12:372–378
    [Google Scholar]
  9. Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 2010;309:1–7 [CrossRef]
    [Google Scholar]
  10. Giannattasio M, Vendramin E, Fornasier F, Alberghini S, Zanardo M et al. Microbiological features and bioactivity of a fermented manure product (preparation 500) used in biodynamic agriculture. J Microbiol Biotechnol 2013;23:644–651 [CrossRef][PubMed]
    [Google Scholar]
  11. Anandham R, Premalatha N, Jee HJ, Weon HY, Kwon SW et al. Cultivable bacterial diversity and early plant growth promotion by the traditional organic formulations prepared using organic waste materials. Int J Recycl Org Waste Agric 2015;4:279–289 [CrossRef]
    [Google Scholar]
  12. Tarrand JJ, Krieg NR, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978;24:967–980 [CrossRef][PubMed]
    [Google Scholar]
  13. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M et al. Azospirillum halopraeferens sp. nov., a Nitrogen-Fixing Organism Associated with Roots of Kallar Grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 1987;37:43–51 [CrossRef]
    [Google Scholar]
  14. Ben Dekhil S, Cahill M, Stackebrandt E, Sly LI. Transfer of Conglomeromonas largomobilis subsp. largomobilis to the Genus Azospirillum as Azospirillum largomobile comb. nov., and Elevation of Conglomeromonas largomobilis subsp. parooensis to the New Type Species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst Appl Microbiol 1997;20:72–77 [CrossRef]
    [Google Scholar]
  15. Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M et al. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 2001;51:17–26 [CrossRef][PubMed]
    [Google Scholar]
  16. Xie CH, Yokota A. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 2005;55:1435–1438 [CrossRef][PubMed]
    [Google Scholar]
  17. Peng G, Wang H, Zhang G, Hou W, Liu Y et al. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 2006;56:1263–1271 [CrossRef][PubMed]
    [Google Scholar]
  18. Mehnaz S, Weselowski B, Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 2007;57:620–624 [CrossRef][PubMed]
    [Google Scholar]
  19. Mehnaz S, Weselowski B, Lazarovits G. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 2007;57:2805–2809 [CrossRef][PubMed]
    [Google Scholar]
  20. Young CC, Hupfer H, Siering C, Ho MJ, Arun AB et al. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2008;58:959–963 [CrossRef][PubMed]
    [Google Scholar]
  21. Lin SY, Young CC, Hupfer H, Siering C, Arun AB et al. Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 2009;59:761–765 [CrossRef][PubMed]
    [Google Scholar]
  22. Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V et al. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 2010;60:2832–2837 [CrossRef][PubMed]
    [Google Scholar]
  23. Lin SY, Shen FT, Young LS, Zhu ZL, Chen WM et al. Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 2012;62:1185–1190 [CrossRef][PubMed]
    [Google Scholar]
  24. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. Int J Syst Evol Microbiol 2015;65:4601–4607 [CrossRef][PubMed]
    [Google Scholar]
  25. Lin SY, Liu YC, Hameed A, Hsu YH, Huang HI et al. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int J Syst Evol Microbiol 2016;66:1453–1458 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhou S, Han L, Wang Y, Yang G, Zhuang L et al. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 2013;63:2618–2624 [CrossRef][PubMed]
    [Google Scholar]
  27. Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013;63:3762–3768 [CrossRef][PubMed]
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  30. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  32. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  33. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  34. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans AD. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997;143:2983–2989 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  36. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  38. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  39. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  41. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003320
Loading
/content/journal/ijsem/10.1099/ijsem.0.003320
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error