1887

Abstract

Three strains of a Gram-stain negative bacterium were isolated from Lake Michigan water. 16S rRNA gene sequence analysis revealed that strain 1131 had sequence similarities to Bosea vaviloviae LMG 28367, Bosea lathyri LMG 26379, Bosea lupini LMG 26383, Bosea eneae CCUG 43111, Bosea vestrisii CCUG 43114 and Bosea massiliensis CCUG 43117 of 99.8, 99.1, 98.4, 98.4, 98.4 and 98.2 %, respectively. The average nucleotide identity value between strain 1131 and Bosea vaviloviae Vaf-18 was 93.4 % and the DNA relatedness was 38 %. The primary cellular fatty acids of strain 1131 were C16 : 1ω7c and C18 : 1ω7c. The primary polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The major compound in the quinone system was ubiquinone Q-10 and in the polyamine pattern sym-homospermidine was predominant. Additional phenotypic characteristics included growth at 5–35 °C, pH values of pH 5.5–8.0, a salt tolerance range of 0.0–1.2 % (w/v), and production of an unknown water soluble brown pigment. After phenotypic, chemotaxonomic and genomic analyses, this isolate was identified as a novel species for which the name Bosea psychrotolerans is proposed. The type strain is 1131 (NRRL B-65405=LMG 30034).

Keyword(s): Bosea , psychrotolerans and psychrotroph
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003319
2019-03-18
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1376.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003319&mimeType=html&fmt=ahah

References

  1. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 2011; 75:14–49 [View Article][PubMed]
    [Google Scholar]
  2. Norton CD, Lechevallier MW. A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 2000; 66:268–276 [View Article][PubMed]
    [Google Scholar]
  3. Santo Domingo JW, Meckes MC, Simpson JM, Sloss B, Reasoner DJ. Molecular characterization of bacteria inhabiting a water distribution system simulator. Water Sci Technol 2003; 47:149–154 [View Article][PubMed]
    [Google Scholar]
  4. Berry D, Xi C, Raskin L. Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 2006; 17:297–302 [View Article][PubMed]
    [Google Scholar]
  5. Poitelon JB, Joyeux M, Welté B, Duguet JP, Prestel E et al. Assessment of phylogenetic diversity of bacterial microflora in drinking water using serial analysis of ribosomal sequence tags. Water Res 2009; 43:4197–4206 [View Article][PubMed]
    [Google Scholar]
  6. Lu P, Chen C, Wang Q, Wang Z, Zhang X et al. Phylogenetic diversity of microbial communities in real drinking water distribution systems. Biotechnol Bioproc E 2013; 18:119–124 [View Article]
    [Google Scholar]
  7. Feng S, Chen C, Wang QF, Zhang XJ, Yang ZY et al. Characterization of microbial communities in a granular activated carbon–sand dual media filter for drinking water treatment. Int J Environ Sci Tech 2013; 10:917–922 [View Article]
    [Google Scholar]
  8. Liao X, Chen C, Wang Z, Chang C-H, Zhang X et al. Bacterial community change through drinking water treatment processes. Int J Environ Sci Tech 2015; 12:1867–1874 [View Article]
    [Google Scholar]
  9. Mueller-Spitz SR, Goetz GW, McLellan SL. Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol 2009; 67:511–522 [View Article][PubMed]
    [Google Scholar]
  10. Fisher JC, Newton RJ, Dila DK, McLellan SL. Urban microbial ecology of a fresh water estuary of Lake Michigan. Elementa 2015; 3: [View Article][PubMed]
    [Google Scholar]
  11. Newton RJ, McLellan SL. A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front Microbiol 2015; 6:1–13 [View Article][PubMed]
    [Google Scholar]
  12. Albert RA, Langer S, Waas N, Pavlons S, Feldner JL et al. Labrys wisconsinensis sp. nov., a novel, budding bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2010; 60:1570–1576
    [Google Scholar]
  13. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L et al. Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2013; 63:952–958 [View Article][PubMed]
    [Google Scholar]
  14. Albert RA, Zitomer D, Dollhopf M, Schauer-Gimenez AE, Struble C et al. Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a curved Gram-stain-negative bacterium isolated from lake water. Int J Syst Evol Microbiol 2014; 64:613–620 [View Article][PubMed]
    [Google Scholar]
  15. Albert RA, Waas NE, Pavlons SC, Pearson JL, Roecker J et al. Filimonas aurantiibacter sp. nov., an orange-pigmented bacterium isolated from lake water and emended description of the genus Filimonas. Int J Syst Evol Microbiol 2016; 66:4027–4032 [View Article][PubMed]
    [Google Scholar]
  16. Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov. analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 1996; 46:981–987 [View Article][PubMed]
    [Google Scholar]
  17. La Scola B, Mallet MN, Grimont PA, Raoult D. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol 2003; 53:15–20 [View Article][PubMed]
    [Google Scholar]
  18. de Meyer SE, Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol 2012; 62:2505–2510 [View Article][PubMed]
    [Google Scholar]
  19. Ouattara AS, Assih EA, Thierry S, Cayol JL, Labat M et al. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int J Syst Evol Microbiol 2003; 53:1247–1251 [View Article][PubMed]
    [Google Scholar]
  20. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA et al. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 2015; 107:911–920 [View Article][PubMed]
    [Google Scholar]
  21. Hong S, Farrance CE, Russell A, Hana Y et al. Reclassication of Deinococcus xibeiensis Wang et al., 2010 as a heterotypic synonym of Deinococcus wulumuqiensis Wang et al., 2010. Int J Syst Evol Microbiol 2010; 2015:1083–1085
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  24. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Phylogeny Inference Package (PHYLIP), Version 3.5. Seattle: University of Washington; 1993
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  28. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  29. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article][PubMed]
    [Google Scholar]
  30. Bennett S. Solexa ltd. Pharmacogenomics 2004; 5:433–438 [View Article][PubMed]
    [Google Scholar]
  31. Whitman WB, Woyke T, Klenk HP, Zhou Y, Lilburn TG et al. Genomic encyclopedia of bacterial and archaeal type strains, phase iii: the genomes of soil and plant-associated and newly described type strains. Stand Genomic Sci 2015; 10:26 [View Article][PubMed]
    [Google Scholar]
  32. Bushnell B. BB tools software package, URL. http://bbtools.jgi.doe.gov
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  34. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 2015; 10:86 [View Article][PubMed]
    [Google Scholar]
  35. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article][PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  38. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  40. Smibert RM, Krieg RN. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM Press; 1994 pp. 607–654
    [Google Scholar]
  41. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM Press; 1994 pp. 137–154
    [Google Scholar]
  42. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N et al. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC Groups IIK-2 and IIb. Int J Sys Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  43. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  44. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  45. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  46. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  47. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  48. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003319
Loading
/content/journal/ijsem/10.1099/ijsem.0.003319
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error