1887

Abstract

Phylogenomic analysis of recently released high-quality draft genome sequences of the halotolerant acidophiles, Acidihalobacter prosperus V6 (=DSM 14174=JCM 32253) and ‘ Acidihalobacter ferrooxidans’ V8 (=DSM 14175=JCM 32254), was undertaken in order to clarify their taxonomic relationship. Sequence based phylogenomic approaches included 16S rRNA gene phylogeny, multi-gene phylogeny from the concatenated alignment of nine selected housekeeping genes and multiprotein phylogeny using clusters of orthologous groups of proteins from ribosomal protein families as well as those from complete sets of markers based on concatenated alignments of universal protein families. Non-sequence based approaches for species circumscription were based on analyses of average nucleotide identity, which was further reinforced by the correlation indices of tetra-nucleotide signatures as well as genome-to-genome distance (digital DNA–DNA hybridization) calculations. The different approaches undertaken in this study for species tree reconstruction resulted in a tree that was phylogenetically congruent, revealing that both micro-organisms are members of separate species of the genus Acidihalobacter . In accordance, it is proposed that A. prosperus V6 (=DSM 14174 =JCM 32253 ) be formally classified as Acidihalobacter aeolianus sp. nov., and ‘ Acidihalobacter ferrooxidans’ V8 (=DSM 14175 =JCM 32254 ) as Acidihalobacter ferrooxydans sp. nov., and that both represent the type strains of their respective species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003313
2019-03-05
2019-08-22
Loading full text...

Full text loading...

References

  1. Zammit CM, Watkin ELJ. Adaptation to extreme acidity and osmotic stress. Acidophiles: Life in Extremely Acidic Environments Norfolk, UK: Caister Academic Press; 2016; pp.49–62
    [Google Scholar]
  2. Zammit CM, Mutch LA, Watling HR, Watkin ELJ. The characterization of salt tolerance in biomining microorganisms and the search for novel salt tolerant strains. Adv Mat Res 2009;71-73:283–286 [CrossRef]
    [Google Scholar]
  3. Watling HR, Collinson DM, Corbett MK, Shiers DW, Kaksonen AH et al. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms. Res Microbiol 2016;167:546–554 [CrossRef][PubMed]
    [Google Scholar]
  4. Pablo Cárdenas J, Ortiz R, Norris PR, Watkin E, Holmes DS. Reclassification of 'Thiobacillus prosperus' Huber and Stetter 1989 as Acidihalobacter prosperus gen. nov., sp. nov., a member of the family Ectothiorhodospiraceae. Int J Syst Evol Microbiol 2015;65:3641–3644 [CrossRef][PubMed]
    [Google Scholar]
  5. Huber H, Stetter KO. Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol 1989;151:479–485 [CrossRef]
    [Google Scholar]
  6. Ossandon FJ, Cardenas JP, Corbett M, Quatrini R, Holmes DS et al. Draft genome sequence of the iron-oxidizing, acidophilic, and halotolerant "Thiobacillus prosperus" type strain DSM 5130. Genome Announc 2014;2:e0104201014 [CrossRef][PubMed]
    [Google Scholar]
  7. Simmons S, Norris R. Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 2002;6:201–207 [CrossRef][PubMed]
    [Google Scholar]
  8. Davis-Belmar CS, Nicolle JLC, Norris PR. Ferrous iron oxidation and leaching of copper ore with halotolerant bacteria in ore columns. Hydrometallurgy 2008;94:144–147 [CrossRef]
    [Google Scholar]
  9. Norris PR, Davis-Belmar CS, Nicolle JLC, Calvo-Bado LA, Angelatou V. Pyrite oxidation and copper sulfide ore leaching by halotolerant, thermotolerant bacteria. Hydrometallurgy 2010;104:432–436 [CrossRef]
    [Google Scholar]
  10. Norris P, Simmons S. Pyrite oxidation by halotolerant, acidophilic bacteria. Biohydrometallurgy: A Sustainable Technology in Evolution Part II National Technical University of Athens 2004; pp.1347–1351
    [Google Scholar]
  11. Hallberg KB, Hedrich S, Johnson DB. Acidiferrobacter thiooxydans, gen. nov. sp. nov., an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 2011;15:271–279 [CrossRef][PubMed]
    [Google Scholar]
  12. Kelly D, Wood A, Stackebrandt E. Thiobacillus Beijerinck 1904b, 597 AL. Bergey’s Manual of Systematic Bacteriology 2005; pp.764–769
    [Google Scholar]
  13. Khaleque HN, Kaksonen AH, Boxall NJ, Watkin ELJ. Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron- and sulfur-oxidizing cultures. Miner Eng 2018;120:87–93 [CrossRef]
    [Google Scholar]
  14. Simmons S. The microbial ecology of acidic environments. PhD thesis University of Warwick;
    [Google Scholar]
  15. Khaleque HN, Ramsay JP, Murphy RJT, Kaksonen AH, Boxall NJ et al. Draft genome sequence of the acidophilic, halotolerant, and iron/sulfur-oxidizing Acidihalobacter prosperus DSM 14174 (Strain V6). Genome Announc 2017;5:e0146901416 [CrossRef][PubMed]
    [Google Scholar]
  16. Khaleque HN, Ramsay JP, Murphy RJT, Kaksonen AH, Boxall NJ et al. Draft genome sequence of Acidihalobacter ferrooxidans DSM 14175 (Strain V8), a new iron- and sulfur-oxidizing, halotolerant, acidophilic species. Genome Announc 2017;5:e0041300417 [CrossRef][PubMed]
    [Google Scholar]
  17. Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005;6:361–375 [CrossRef][PubMed]
    [Google Scholar]
  18. Dopson M, Holmes DS, Lazcano M, McCredden TJ, Bryan CG et al. Multiple osmotic stress responses in Acidihalobacter prosperus result in tolerance to chloride ions. Front Microbiol 2016;7: [CrossRef][PubMed]
    [Google Scholar]
  19. Khaleque HN, Shafique R, Kaksonen AH, Boxall NJ, Watkin ELJ. Quantitative proteomics using SWATH-MS identifies mechanisms of chloride tolerance in the halophilic acidophile Acidihalobacter prosperus DSM 14174. Res Microbiol 2018;169:638–648 [CrossRef][PubMed]
    [Google Scholar]
  20. Imhoff JF. Family II. Ectothiorhodospiraceae Imhoff 1984b, 339VP. Bergey's Manual of Systematic Bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria, Part B: The Gammaproteobacteriavol. 2 2007; pp.41
    [Google Scholar]
  21. Madden T. The BLAST sequence analysis tool. 2013. Mar 15. In The NCBI Handbook [Internet], 2nd ed. Bethesda (MD): National Center for Biotechnology Information (US); 2013
    [Google Scholar]
  22. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  23. Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol 2014;1079:131–146 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  25. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  26. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  27. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  28. Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069–5072 [CrossRef][PubMed]
    [Google Scholar]
  29. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37:D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  30. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  32. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008;25:1253–1256 [CrossRef][PubMed]
    [Google Scholar]
  33. Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461–464 [CrossRef]
    [Google Scholar]
  34. Brown JK. Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proc Natl Acad Sci USA 1994;91:12293–12297 [CrossRef]
    [Google Scholar]
  35. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  36. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 2005;71:5107–5115 [CrossRef][PubMed]
    [Google Scholar]
  37. Thompson FL, Gomez-Gil B, Vasconcelos AT, Sawabe T. Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. Appl Environ Microbiol 2007;73:4279–4285 [CrossRef][PubMed]
    [Google Scholar]
  38. Pascual J, MacIán MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Microbiol 2010;60:154–165 [CrossRef]
    [Google Scholar]
  39. Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 2013;4:414 [CrossRef][PubMed]
    [Google Scholar]
  40. López-Hermoso C, de La Haba RR, Sánchez-Porro C, Papke RT, Ventosa A. Assessment of multiLocus sequence analysis as a valuable tool for the classification of the genus Salinivibrio. Front Microbiol 2017;8:1107 [CrossRef][PubMed]
    [Google Scholar]
  41. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  42. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007;56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  44. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003;4:41 [CrossRef][PubMed]
    [Google Scholar]
  45. Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS One 2012;7:e36972 [CrossRef][PubMed]
    [Google Scholar]
  46. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B et al. Toward automatic reconstruction of a highly resolved tree of life. Science 2006;311:1283–1287 [CrossRef][PubMed]
    [Google Scholar]
  47. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008;25:1307–1320 [CrossRef][PubMed]
    [Google Scholar]
  48. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011;27:1164–1165 [CrossRef][PubMed]
    [Google Scholar]
  49. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  50. Akaike H. A new look at the statistical model identification. In Parzen E, Tanabe K, Kitagawa G. (editors) Selected Papers of Hirotugu Akaike New York, NY: Springer New York; 1998; pp.215–222
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  52. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  53. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 2014;5:e02136 [CrossRef][PubMed]
    [Google Scholar]
  54. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  55. Chan JZ, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol 2012;12:302 [CrossRef][PubMed]
    [Google Scholar]
  56. Thompson CC, Vicente AC, Souza RC, Vasconcelos AT, Vesth T et al. Genomic taxonomy of Vibrios. BMC Evol Biol 2009;9:258 [CrossRef][PubMed]
    [Google Scholar]
  57. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  58. Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol 2004;6:938–947 [CrossRef][PubMed]
    [Google Scholar]
  59. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  60. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  61. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6:214 [CrossRef][PubMed]
    [Google Scholar]
  62. Yonezuka K, Shimodaira J, Tabata M, Ohji S, Hosoyama A et al. Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group. J Gen Appl Microbiol 2017;63:1–10 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003313
Loading
/content/journal/ijsem/10.1099/ijsem.0.003313
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error