1887

Abstract

An extremely halophilic euryarchaeon, strain HArcel1, was enriched and isolated in pure culture from the surface brines and sediments of hypersaline athalassic lakes in the Kulunda Steppe (Altai region, Russia) using amorphous cellulose as the growth substrate. The colonies of HArcel1 are pale-orange, and form large zones of cellulose hydrolysis around them. The cells are non-motile cocci of variable size with a thin monolayer cell wall. The isolate is an obligate aerobic heterotroph capable of growth with only three substrates: various forms of insoluble cellulose, xylan and cellobiose. Strain HArcel1 is an extremely halophilic neutrophile, growing within the salinity range from 2.5 to 5 M NaCl (optimum at 3.5–4 M). The core archaeal lipids are dominated by C20–C20 and C25–C20 dialkyl glycerol ethers, in approximately 6:1 proportion. The 16S rRNA and rpoB′ gene analysis indicated that HArcel1 forms a separate lineage within the family Haloarculaceae , order Halobacteriales , with the genera Halorhabdus and Halopricus as closest relatives. On the basis of the unique phenotypic properties and distinct phylogeny of the 16S rRNA and rpoB′ genes, it is suggested that strain HArcel1 is classified into a new genus and species Halococcoides cellulosivorans gen. nov., sp. nov. (JCM 31941=UNIQEM U975).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003312
2019-02-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1327.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003312&mimeType=html&fmt=ahah

References

  1. Ventosa A, Oren A, Ma Y. (editors) Halophiles and hypersaline environments. Current Research and Future Trends Heidelberg, Dordrecht, London, New York: Springer; 2011 pp. 387
    [Google Scholar]
  2. Horikoshi K. Halophiles, Part III. Extremophiles Handbook vol. 1 Tokyo: Springer; 2011 pp. 255–402
    [Google Scholar]
  3. Andrei , Banciu HL, Oren A. Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 2012; 330:1–9 [View Article][PubMed]
    [Google Scholar]
  4. Oren A. Halophilic microbial communities and their environments. Curr Opin Biotechnol 2015; 33:119–124 [View Article][PubMed]
    [Google Scholar]
  5. Oren A. Life at high salt concentrations. In Rosenberg E. (editor) The Prokaryotes. Ecophysiology and Biochemistry, 4th ed. NewYork: Springer; 2013 pp. 429–440
    [Google Scholar]
  6. Grant BD, Jones BE. Bacteria, archaea and viruses of soda lakes. In Schagerl M. (editor) Springer: Switzerland East Africa: Soda lakes of; 2016 pp. 97–147
    [Google Scholar]
  7. Bhatnagar T, Boutaiba S, Hacene H, Cayol JL, Fardeau ML et al. Lipolytic activity from Halobacteria: screening and hydrolase production. FEMS Microbiol Lett 2005; 248:133–140 [View Article][PubMed]
    [Google Scholar]
  8. Enache M, Kamekura M. Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 2010; 47:47–59
    [Google Scholar]
  9. Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA. Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 2013; 17:677–687 [View Article][PubMed]
    [Google Scholar]
  10. Selim S, Hagagy N, Abdel Aziz M, El-Meleigy E, Pessione E. Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat Prod Res 2014; 28:1476–1479 [View Article][PubMed]
    [Google Scholar]
  11. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017; 163:623–645 [View Article][PubMed]
    [Google Scholar]
  12. Li X, Yu HY. Halostable cellulase with organic solvent tolerance from Haloarcula sp. LLSG7 and its application in bioethanol fermentation using agricultural wastes. J Ind Microbiol Biotechnol 2013; 40:1357–1365 [View Article][PubMed]
    [Google Scholar]
  13. Li X, Yu HY. Characterization of a halostable endoglucanase with organic solvent-tolerant property from Haloarcula sp. G10. Int J Biol Macromol 2013; 62:101–106 [View Article][PubMed]
    [Google Scholar]
  14. Werner J, Ferrer M, Michel G, Mann AJ, Huang S et al. Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environ Microbiol 2014; 16:2525–2537 [View Article][PubMed]
    [Google Scholar]
  15. Sorokin DY, Toshchakov SV, Kolganova TV, Kublanov IV. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol 2015; 6: article 942 [View Article][PubMed]
    [Google Scholar]
  16. Sorokin DY, Khijniak TV, Kostrikina NA, Elcheninov AG, Toshchakov SV et al. Natronobiforma cellulositropha gen. nov., sp. nov., a novel haloalkaliphilic member of the family Natrialbaceae (class Halobacteria) from hypersaline alkaline lakes. Syst Appl Microbiol 2018; 41:355–362 [View Article][PubMed]
    [Google Scholar]
  17. Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 1966; 55:245–256 [View Article]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  19. Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. Computer science and biology. Proceedings of the German Conference on Bioinformatics 1999; 99:45–56
    [Google Scholar]
  20. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014; 42:D560–D567 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017bbx108 [View Article][PubMed]
    [Google Scholar]
  23. Nei M, Kumar S. Molecular evolution and phylogenetics. Oxford University Press: New York 2000333
    [Google Scholar]
  24. Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 2007; 7:965–968 [View Article]
    [Google Scholar]
  25. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article][PubMed]
    [Google Scholar]
  26. Oren A. Haloarculaceae. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2017
    [Google Scholar]
  27. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  30. Weijers JWH, Panoto E, van Bleijswijk J, Schouten S, Rijpstra WIC et al. Constraints on the Biological Source(s) of the Orphan Branched Tetraether Membrane Lipids. Geomicrobiol J 2009; 26:402–414 [View Article]
    [Google Scholar]
  31. Damsté JS, Rijpstra WI, Hopmans EC, Jung MY, Kim JG et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b thaumarchaeota in soil. Appl Environ Microbiol 2012; 78:6866–6874 [View Article][PubMed]
    [Google Scholar]
  32. Tenchov B, Vescio EM, Sprott GD, Zeidel ML, Mathai JC. Salt tolerance of archaeal extremely halophilic lipid membranes. J Biol Chem 2006; 281:10016–10023 [View Article][PubMed]
    [Google Scholar]
  33. Kates M. Archaebacterial lipids: structure, biosynthesis and function. In Danson MJ, Hough DW, Lunt GG. (editors) The Archaebacteria: Biochemistry and Biotechnology London: Portland Press; 1992 pp. 51–72
    [Google Scholar]
  34. Oger PM, Cario A. Adaptation of the membrane in Archaea. Biophys Chem 2013; 183:42–56 [View Article][PubMed]
    [Google Scholar]
  35. Oren A, Ventosa A, Grant WD. Proposed Minimal Standards for Description of New Taxa in the Order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  36. Holding AJ, Collee JG. Routine biochemical tests. Meth Microbiol 1971; 6A:1–32
    [Google Scholar]
  37. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF et al. Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 2008; 58:215–220 [View Article][PubMed]
    [Google Scholar]
  38. Wainø M, Ingvorsen K. Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 2003; 7:87–93 [View Article][PubMed]
    [Google Scholar]
  39. Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A et al. Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 2010; 60:2529–2534 [View Article][PubMed]
    [Google Scholar]
  40. Song HS, Cha IT, Yim KJ, Lee HW, Hyun DW et al. Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie van Leeuwenhoek 2014; 105:979–986 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003312
Loading
/content/journal/ijsem/10.1099/ijsem.0.003312
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error