1887

Abstract

Five Bifidobacterium strains, i.e. 2020B, 2028B, 2033B, 2034B and 2036B, were isolated from European beaver (Castor fiber), Goeldi's marmoset (Callimicogoeldii), black-capped squirrel monkey (Saimiriboliviensissubsp. peruviensis) and Patagonian mara (Dolichotispatagonum). All of these isolates were shown to be Gram-positive, facultative anaerobic, d-fructose 6-phosphate phosphoketolase-positive, non-motile and non-sporulating. Phylogenetic analyses based on 16S rRNA gene sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2020B, 2028B, 2033B, 2034B and 2036B exhibit close phylogenetic relatedness to Bifidobacterium biavatii DSM 23969, Bifidobacterium bifidum LMG 11041, Bifidobacterium choerinum LMG 10510, Bifidobacterium gallicum LMG 11596, Bifidobacterium imperatoris LMG 30297, Bifidobacterium italicum LMG 30187 and Bifidobacterium vansinderenii LMG 30126, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium castoris sp. nov. (2020B=LMG 30937=CCUG 72816), Bifidobacterium callimiconis sp. nov. (2028B=LMG 30938=CCUG 72814), Bifidobacterium samirii sp. nov. (2033B=LMG 30940=CCUG 72817), Bifidobacterium goeldii sp. nov. (2034B=LMG 30939=CCUG 72815) and Bifidobacterium dolichotidis sp. nov. (2036B=LMG 30941=CCUG 72818) are proposed as novel Bifidobacterium species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003306
2019-02-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1288.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003306&mimeType=html&fmt=ahah

References

  1. Milani C, Duranti S, Bottacini F, Casey E, Turroni F et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017; 81: [View Article][PubMed]
    [Google Scholar]
  2. Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 2017; 18:568 [View Article][PubMed]
    [Google Scholar]
  3. Milani C, Mangifesta M, Mancabelli L, Lugli GA, James K et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J 2017; 11:2834–2847 [View Article][PubMed]
    [Google Scholar]
  4. Duranti S, Lugli GA, Mancabelli L, Armanini F, Turroni F et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 2017; 5:66 [View Article][PubMed]
    [Google Scholar]
  5. Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci 2018; 75:103–118 [View Article][PubMed]
    [Google Scholar]
  6. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Corrigendum to "bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: Three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.)" [Syst. Appl. Microbiol. 39 (2016) 229-236]. Syst Appl Microbiol 2018; 41:528 [View Article][PubMed]
    [Google Scholar]
  7. Lugli GA, Mangifesta M, Duranti S, Anzalone R, Milani C et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst Appl Microbiol 2018; 41:173–183 [View Article][PubMed]
    [Google Scholar]
  8. Modesto M, Michelini S, Oki K, Biavati B, Watanabe K et al. Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2018; 68:575–581 [View Article][PubMed]
    [Google Scholar]
  9. Modesto M, Michelini S, Sansosti MC, de Filippo C, Cavalieri D et al. Bifidobacterium callitrichidarum sp. nov. from the faeces of the emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2018; 68:141–148 [View Article][PubMed]
    [Google Scholar]
  10. Duranti S, Mangifesta M, Lugli GA, Turroni F, Anzalone R et al. Bifidobacterium vansinderenii sp. nov., isolated from faeces of emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2017; 67:3987–3995 [View Article][PubMed]
    [Google Scholar]
  11. Pechar R, Killer J, Salmonová H, Geigerová M, Švejstil R et al. Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa). Int J Syst Evol Microbiol 2017; 67:2349–2356 [View Article][PubMed]
    [Google Scholar]
  12. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: Three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016; 39:229–236 [View Article][PubMed]
    [Google Scholar]
  13. Michelini S, Modesto M, Pisi AM, Filippini G, Sandri C et al. Bifidobacterium eulemuris sp. nov., isolated from faeces of black lemurs (Eulemur macaco). Int J Syst Evol Microbiol 2016; 66:1567–1576 [View Article][PubMed]
    [Google Scholar]
  14. Laureys D, Cnockaert M, de Vuyst L, Vandamme P. Bifidobacterium aquikefiri sp. nov., isolated from water kefir. Int J Syst Evol Microbiol 2016; 66:1281–1286 [View Article][PubMed]
    [Google Scholar]
  15. Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M et al. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst Evol Microbiol 2016; 66:255–265 [View Article][PubMed]
    [Google Scholar]
  16. Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 2014; 80:6383–6394 [View Article][PubMed]
    [Google Scholar]
  17. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 2009; 75:1534–1545 [View Article][PubMed]
    [Google Scholar]
  18. Ventura M, Zink R. Rapid identification, differentiation, and proposed new taxonomic classification of Bifidobacterium lactis. Appl Environ Microbiol 2002; 68:6429–6434 [View Article][PubMed]
    [Google Scholar]
  19. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 2014; 80:6290–6302 [View Article][PubMed]
    [Google Scholar]
  20. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015; 5:15782 [View Article][PubMed]
    [Google Scholar]
  21. Duranti S, Milani C, Lugli GA, Mancabelli L, Turroni F et al. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci Rep 2016; 6:23971 [View Article][PubMed]
    [Google Scholar]
  22. Lugli GA, Milani C, Mancabelli L, van Sinderen D, Ventura M. MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation. FEMS Microbiol Lett 2016; 363:fnw049 [View Article][PubMed]
    [Google Scholar]
  23. Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ Microbiol 2015; 17:2515–2531 [View Article][PubMed]
    [Google Scholar]
  24. Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M et al. Tracking the taxonomy of the genus bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol 2018; 84: [View Article][PubMed]
    [Google Scholar]
  25. Ventura M, Canchaya C, del Casale A, Dellaglio F, Neviani E et al. Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006; 56:2783–2792 [View Article][PubMed]
    [Google Scholar]
  26. Zhao J, Zhang S, Wu LY, Zhang XS. Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics 2012; 28:2940–2947 [View Article][PubMed]
    [Google Scholar]
  27. Enright AJ, van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002; 30:1575–1584 [View Article][PubMed]
    [Google Scholar]
  28. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article][PubMed]
    [Google Scholar]
  29. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 2005; 3:733–739 [View Article][PubMed]
    [Google Scholar]
  30. Stackebrandt E, Kramer I, Swiderski J, Hippe H. Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 1999; 24:253–258 [View Article][PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  33. Puglisi E, Mattarelli P, Modesto M, Bonetti A, Spiezio C et al. Draft genome sequences of strains TRE 1, TRE D, TRE H, and TRI 7, isolated from tamarins and belonging to four putative novel Bifidobacterium Species. Genome Announc 2018; 6: [View Article][PubMed]
    [Google Scholar]
  34. Pineiro M, Stanton C. Probiotic bacteria: legislative framework-requirements to evidence basis. J Nutr 2007; 137:850S–853 [View Article][PubMed]
    [Google Scholar]
  35. Modesto M, Michelini S, Stefanini I, Sandri C, Spiezio C et al. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol 2015; 65:1726–1734 [View Article][PubMed]
    [Google Scholar]
  36. Biavati B, Mattarelli P. Genus bifidobacterium. In Bergey’s Manual of Systematic Bacteriology Springer-Verlag: New York Inc; 2012 pp. 171–206
    [Google Scholar]
  37. Karp PD, Paley S, Romero P. The pathway tools software. Bioinformatics 2002; 18:S225–S232 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003306
Loading
/content/journal/ijsem/10.1099/ijsem.0.003306
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error