1887

Abstract

Three Gram-stain-positive, catalase-negative, α-haemolytic, chain-forming and coccus-shaped microorganisms (strains Z15, Z1 and Z2) were isolated from feces of Tibetan antelopes collected from the Qinghai–Tibet plateau, PR China. The results of 16S rRNA gene sequence studies indicated that Z15 shared 94.5, 93.1 and 92.2 % similarity with Streptococcus pantholopis DSM 102135, Streptococcus ursoris NUM 1615 and Streptococcus dentapri NUM 1529, respectively. rpoB and groEL-based sequence analysis of our three novel isolates revealed interspecies divergence of 16.7 and 14.3 % from Streptococcus pantholopis DSM 102135. The genomic DNA G+C content of Z15 is 42.48 mol%. Z15 has an average nucleotide identity (ANI) value of 81.19 % with S. pantholopis DSM 102135 and a DNA–DNA relatedness value of less than 70 % in the in-silico DNA–DNA hybridization (isDDH) with other species of genus Streptococcus deposited in the GenBank database. A whole-genome phylogenetic tree based on 246 core genes of 78 genomes of members of the genus Streptococcus indicated that Z15 represents a member of genus Streptococcus but one well separated from the currently recognized species. Z15 contains C18 : 1ω7c (25.5 %), C18 : 1ω9c (19.6 %), C16 : 0 (17.5 %) and C16 : 1ω9c (13.3 %) as its major cellular fatty acids. According to the morphological, biochemical and molecular phylogenetic features of the three novel isolates, they represent a novel species of the genus Streptococcus , and Streptococcus chenjunshii sp. nov. is thus proposed. The type strain is Z15 (=CGMCC 1.16529=DSM 106182).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003303
2019-02-20
2020-01-28
Loading full text...

Full text loading...

References

  1. Parte AC. LPSN-List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  2. Chanter N. Streptococci and enterococci as animal pathogens. J Appl Microbiol 1997;83:100S–109 [CrossRef][PubMed]
    [Google Scholar]
  3. Köhler W. The present state of species within the genera Streptococcus and Enterococcus. Int J Med Microbiol 2007;297:133–150 [CrossRef][PubMed]
    [Google Scholar]
  4. Braden GC, Arbona RR, Lepherd M, Monette S, Toma A et al. A novel α-hemolytic Streptococcus species (Streptococcus azizii sp. nov.) associated with meningoencephalitis in naïve weanling C57BL/6 mice. Comp Med 2015;65:186–195[PubMed]
    [Google Scholar]
  5. Okamoto M, Imai S, Miyanohara M, Saito W, Momoi Y et al. Streptococcus panodentis sp. nov. from the oral cavities of chimpanzees. Microbiol Immunol 2015;59:526–532 [CrossRef][PubMed]
    [Google Scholar]
  6. Saito M, Shinozaki-Kuwahara N, Hirasawa M, Takada K. Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin. Int J Syst Evol Microbiol 2016;66:1063–1067 [CrossRef][PubMed]
    [Google Scholar]
  7. Vela AI, Mentaberre G, Lavín S, Domínguez L, Fernández-Garayzábal JF et al. Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol 2016;66:196–200 [CrossRef][PubMed]
    [Google Scholar]
  8. Takada K, Hayashi K, Sato Y, Hirasawa M. Streptococcus dentapri sp. nov., isolated from the wild boar oral cavity. Int J Syst Evol Microbiol 2010;60:820–823 [CrossRef][PubMed]
    [Google Scholar]
  9. Vela AI, Sánchez V, Mentaberre G, Lavín S, Domínguez L et al. Streptococcus porcorum sp. nov., isolated from domestic and wild pigs. Int J Syst Evol Microbiol 2011;61:1585–1589 [CrossRef][PubMed]
    [Google Scholar]
  10. Vela AI, Sánchez del Rey V, Zamora L, Casamayor A, Domínguez L et al. Streptococcus cuniculi sp. nov., isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 2014;64:2486–2490 [CrossRef][PubMed]
    [Google Scholar]
  11. Vela AI, Casas-Díaz E, Lavín S, Domínguez L, Fernández-Garayzábal JF. Streptococcus pharyngis sp. nov., a novel streptococcal species isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 2015;65:2903–2907 [CrossRef][PubMed]
    [Google Scholar]
  12. Niu L, Lu S, Hu S, Jin D, Lai X et al. Streptococcus marmotae sp. nov., isolated from the respiratory tract of Marmota himalayana. Int J Syst Evol Microbiol 2016;66:4315–4322 [CrossRef][PubMed]
    [Google Scholar]
  13. Niu L, Lu S, Hu S, Jin D, Lai X et al. Streptococcus halotolerans sp. nov. isolated from the respiratory tract of Marmota himalayana in Qinghai-Tibet Plateau of China. Int J Syst Evol Microbiol 2016;66:4211–4217 [CrossRef][PubMed]
    [Google Scholar]
  14. Niu L, Lu S, Lai XH, Hu S, Chen C et al. Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana. Int J Syst Evol Microbiol 2017;67:256–261 [CrossRef][PubMed]
    [Google Scholar]
  15. Niu L, Hu S, Lu S, Lai XH, Yang J et al. Isolation and characterization of Streptococcus respiraculi sp. nov. from Marmota himalayana (Himalayan marmot) respiratory tract. Int J Syst Evol Microbiol 2018;68:2082–2087 [CrossRef][PubMed]
    [Google Scholar]
  16. Bai X, Xiong Y, Lu S, Jin D, Lai X et al. Streptococcus pantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2016;66:3281–3286 [CrossRef][PubMed]
    [Google Scholar]
  17. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013;13:141 [CrossRef][PubMed]
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991; pp.125–175
    [Google Scholar]
  19. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2: Unit 2.3. [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  23. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  24. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004;431:980–984 [CrossRef][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  26. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015;33:623–630 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  29. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  30. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016;44:W54–W57 [CrossRef][PubMed]
    [Google Scholar]
  31. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  32. De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 1970;101:738–754[PubMed]
    [Google Scholar]
  33. Wayne LG. International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988;268:433–434[PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009;26:1641–1650 [CrossRef][PubMed]
    [Google Scholar]
  36. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  37. Austrian R. The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev 1960;24:261–265[PubMed]
    [Google Scholar]
  38. Xu Y, Xu X, Lan R, Xiong Y, Ye C et al. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One 2013;8:e64211 [CrossRef][PubMed]
    [Google Scholar]
  39. Facklam R, Elliott JA. Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 1995;8:479–495 [CrossRef][PubMed]
    [Google Scholar]
  40. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  41. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  42. Póntigo F, Moraga M, Flores SV. Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res 2015;14:10905–10918 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003303
Loading
/content/journal/ijsem/10.1099/ijsem.0.003303
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error