1887

Abstract

Strain DHOC27 is a Gram-stain-negative, aerobic, non-motile, light yellow-pigmented and rod-shaped bacterium isolated from the forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. It grew at 4–37 °C (optimal 28–33 °C), pH 4.0–8.5 (optimal 4.5–6.0) and 0–1.5 (optimal 0–0.5) % (w/v) NaCl. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a clade with Paraburkholderia phenazinium LMG 2247, Paraburkholderia. sartisoli LMG 24000 and Paraburkholderia. pallidirosea DHOK13, with a sequence similarity of 98.5, 97.5 and 98.1 % to the above strains, respectively. The DNA G+C content of DHOC27 was 62.3 mol%. The digital DNA–DNA relatedness values and the average nucleotide identities between strain DHOC27 and P. phenazinium LMG 2247 and P. sartisoli LMG 24000 were 26.9 and 24.3 % and 82.3 and 79.9 %, respectively. C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c were the major fatty acids, and ubiquinone-8 was the major respiratory quinone detected, all of which supported the affiliation of DHOC27 to the genus Paraburkholderia . On the basis of the data presented above, strain DHOC27 represents a novel species of the genus Paraburkholderia and the name Paraburkholderia telluris sp. nov. is proposed. The type strain is DHOC27 (=LMG 30263=GDMCC 1.1281).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003302
2019-02-21
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1274.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003302&mimeType=html&fmt=ahah

References

  1. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014;5:429 [CrossRef][PubMed]
    [Google Scholar]
  2. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992;36:1251–1275 [CrossRef][PubMed]
    [Google Scholar]
  3. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016;66:2836–2846 [CrossRef][PubMed]
    [Google Scholar]
  4. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS et al. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie van Leeuwenhoek 2017;110:727–736 [CrossRef][PubMed]
    [Google Scholar]
  5. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 2018;9:389 [CrossRef][PubMed]
    [Google Scholar]
  6. Gillis M, van van T, Bardin R, Goor M, Hebbar P et al. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 1995;45:274–289 [CrossRef]
    [Google Scholar]
  7. Rusch A, Islam S, Savalia P, Amend JP. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 2015;65:189–194 [CrossRef][PubMed]
    [Google Scholar]
  8. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S et al. Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 1998;48:549–563 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen WM, James EK, Coenye T, Chou JH, Barrios E et al. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 2006;56:1847–1851 [CrossRef][PubMed]
    [Google Scholar]
  10. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E et al. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 2013;63:435–441 [CrossRef][PubMed]
    [Google Scholar]
  11. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Santos PE. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 2004;54:1165–1172 [CrossRef][PubMed]
    [Google Scholar]
  12. Reis VM, Estrada-de Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 2004;54:2155–2162 [CrossRef][PubMed]
    [Google Scholar]
  13. Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de Los Santos P et al. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 2006;56:1931–1937 [CrossRef][PubMed]
    [Google Scholar]
  14. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY et al. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 2007;57:1055–1059 [CrossRef][PubMed]
    [Google Scholar]
  15. Aizawa T, ve NB, Nakajima M, Sunairi M. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2010;60:1152–1157 [CrossRef][PubMed]
    [Google Scholar]
  16. Castro-González R, Martínez-Aguilar L, Ramírez-Trujillo A, Estrada-de Los Santos P, Caballero-Mellado J. High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 2011;345:155–169 [CrossRef]
    [Google Scholar]
  17. Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018;68:1251–1257 [CrossRef][PubMed]
    [Google Scholar]
  18. Huo Y, Kang JP, Kim YJ, Yang DC. Paraburkholderia panacihumi sp. nov., an isolate from ginseng-cultivated soil, is antagonistic against root rot fungal pathogen. Arch Microbiol 2018;200:1151–1158 [CrossRef][PubMed]
    [Google Scholar]
  19. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: Amer Soc Microbiol; 1994
    [Google Scholar]
  20. Harley JP, Prescott LM. Laboratory Exercises in Microbiology, 5th ed. New York: McGraw-Hill; 2002
    [Google Scholar]
  21. Brown AE. Bensons Microbiological Applications: Laboratory Manual in General Microbiology, 4th ed. New York: McGraw-Hill; 1985
    [Google Scholar]
  22. Atlas RM. Composition of media. In Parks LC. (editor) Handbook of Microbiology Media, 2nd. Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  23. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int J Syst Evol Microbiol 2015;65:113–116 [CrossRef][PubMed]
    [Google Scholar]
  24. Bell SC, Turner JM. Iodinin biosynthesis by a pseudomonad. Biochem Soc Trans 1973;1:751–753 [CrossRef]
    [Google Scholar]
  25. Vanlaere E, van der Meer JR, Falsen E, Salles JF, de Brandt E et al. Burkholderia sartisoli sp. nov., isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 2008;58:420–423 [CrossRef][PubMed]
    [Google Scholar]
  26. Lv YY, Chen MH, Xia F, Wang J, Qiu LH. Paraburkholderia pallidirosea sp. nov., isolated from a monsoon evergreen broad-leaved forest soil. Int J Syst Evol Microbiol 2016;66:4537–4542 [CrossRef][PubMed]
    [Google Scholar]
  27. Lane DJ. Small subunit ribosomal RNA sequences and primers. Large subunit ribosomal RNA sequences and primers. Nucleic Acid Tech Bact Syst 1991
    [Google Scholar]
  28. Spilker T, Baldwin A, Bumford A, Dowson CG, Mahenthiralingam E et al. Expanded multilocus sequence typing for Burkholderia species. J Clin Microbiol 2009;47:2607–2610 [CrossRef][PubMed]
    [Google Scholar]
  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;44:406406–425425 [CrossRef][PubMed]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstraP. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  36. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:281–285 [CrossRef][PubMed]
    [Google Scholar]
  37. Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform 2009;23:211–215[PubMed]
    [Google Scholar]
  38. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  39. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  41. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  43. Wayne RK, O'Brien SJ. Allozyme divergence within the Canidae. Syst Zool 1987;36:339–355 [CrossRef]
    [Google Scholar]
  44. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  45. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  46. Sasser M. "Tracking"a strain using the microbial identification system. Midi Technical Note 1990
    [Google Scholar]
  47. Minnikin DE, Minnikin SM, O'Donnell AG, Goodfellow M. Extraction of mycobacterial mycolic acids and other long-chain compounds by an alkaline methanolysis procedure. J Microbiol Methods 1984;2:243–249 [CrossRef]
    [Google Scholar]
  48. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  49. Choi GM, Im WT. Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 2018;68:310–316 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003302
Loading
/content/journal/ijsem/10.1099/ijsem.0.003302
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error