1887

Abstract

An aerobic, motile, Gram-stain-negative bacterium, designated strain NS1, was isolated from interfacial sediment from Taihu Lake, China. The strain formed yellow colonies on R2A medium. Cells were ovoid to rod-shaped and non-spore-forming. Growth occurred at 15–40 °C (optimum, 28 °C), at pH 5.0–10.5 (optimum, 6.5–7.5) and in the presence of 0–1 % (w/v) NaCl (optimum, 0 %). Phylogenetic trees based on 16S rRNA gene sequences showed that strain NS1 represented a member of the genus Altererythrobacter and had the highest sequence similarity to Altererythrobacter troitsensis CCTCC AB 2015180 (97.1 %). The average nucleotide identity value between strain NS1 and the closest related strain based on their genomes was 78.6 %. The predominant ubiquinone was Q-10. The major fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified phospholipid, an unidentified glycolipid and six unidentified lipids. The genomic DNA G+C content was 66.6 mol%. On the basis of phenotypic and genotypic characteristics, strain NS1 represents a novel species of the genus Altererythrobacter , for which the name Altererythrobacter amylolyticus sp. nov. is proposed. The type strain is NS1 (=CGMCC 1.13679=NBRC 113553).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003299
2019-02-20
2019-10-22
Loading full text...

Full text loading...

References

  1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007;57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  3. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2012;62:28–32 [CrossRef][PubMed]
    [Google Scholar]
  4. Xue H, Piao CG, Guo MW, Wang LF, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2016;66:4543–4548 [CrossRef][PubMed]
    [Google Scholar]
  5. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011;61:2035–2039 [CrossRef][PubMed]
    [Google Scholar]
  6. Jung YT, Park S, Lee JS, Yoon JH. Altererythrobacter aestiaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014;64:3943–3949 [CrossRef][PubMed]
    [Google Scholar]
  7. Lei X, Li Y, Chen Z, Zheng W, Lai Q et al. Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater. Int J Syst Evol Microbiol 2014;64:631–637 [CrossRef][PubMed]
    [Google Scholar]
  8. Park S, Jung YT, Park JM, Yoon JH. Altererythrobacter confluentis sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2016;66:4002–4008 [CrossRef][PubMed]
    [Google Scholar]
  9. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016;66:2491–2496 [CrossRef][PubMed]
    [Google Scholar]
  10. Park S, Jung YT, Choi SJ, Yoon JH. Altererythrobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017;67:3446–3451 [CrossRef][PubMed]
    [Google Scholar]
  11. Jung YT, Park S, Lee JS, Yoon JH. Altererythrobacter aquiaggeris sp. nov., isolated from water of an estuary bank. Int J Syst Evol Microbiol 2017;67:3410–3416 [CrossRef][PubMed]
    [Google Scholar]
  12. Yuan CG, Chen X, Jiang Z, Chen W, Liu L et al. Altererythrobacter lauratis sp. nov. and Altererythrobacter palmitatis sp. nov., isolated from a Tibetan hot spring. Antonie van Leeuwenhoek 2017;110:1077–1086 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang G, Yang Y, Wang L. Altererythrobacter aurantiacus sp. nov., isolated from deep-sea sediment. Antonie van Leeuwenhoek 2016;109:1245–1251 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim JH, Yoon JH, Kim W. Altererythrobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016;66:5424–5429 [CrossRef][PubMed]
    [Google Scholar]
  15. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017;67:909–913 [CrossRef][PubMed]
    [Google Scholar]
  16. Ma H, Ren H, Huang L, Luo Y. Altererythrobacter flavus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2018;68:2265–2270 [CrossRef][PubMed]
    [Google Scholar]
  17. Srinivasan S, Joo ES, Kim EB, Jeon SH, Jung HY et al. Altererythrobacter terrae sp. nov., isolated from mountain soil. Antonie van Leeuwenhoek 2016;109:397–404 [CrossRef][PubMed]
    [Google Scholar]
  18. Yuan N, Zeng Y, Feng H, Yu Z, Huang Y. Altererythrobacter xixiisoli sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2017;67:3655–3659 [CrossRef][PubMed]
    [Google Scholar]
  19. Yan ZF, Lin P, Won KH, Yang JE, Li CT et al. Altererythrobacter deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017;67:3806–3811 [CrossRef][PubMed]
    [Google Scholar]
  20. Dahal RH, Kim J. Altererythrobacter fulvus sp. nov., a novel alkalitolerant alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018;68:1502–1508 [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008;58:839–844 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhang W, Yuan X, Feng Q, Zhang R, Zhao X et al. Altererythrobacter buctense sp. nov., isolated from mudstone core. Antonie van Leeuwenhoek 2016;109:793–799 [CrossRef][PubMed]
    [Google Scholar]
  23. Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2013;63:93–97 [CrossRef][PubMed]
    [Google Scholar]
  24. Fidalgo C, Rocha J, Martins R, Proença DN, Morais PV et al. Altererythrobacter halimionae sp. nov. and Altererythrobacter endophyticus sp. nov., two endophytes from the salt marsh plant Halimione portulacoides. Int J Syst Evol Microbiol 2017;67:3057–3062 [CrossRef][PubMed]
    [Google Scholar]
  25. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995;45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  26. Nam SW, Kim W, Chun J, Goodfellow M. Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 2004;54:1209–1212 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  31. Fitch WM, Margoliash E. Construction of phylogenetic trees. Science 1967;155:279–284 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  33. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  35. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  36. Cowan ST, Feltham RKA, Barrow GI, Steel KJ. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. New York: Cambridge University Press; 1993
    [Google Scholar]
  37. Shieh WY, Chen AL, Chiu HH. Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 2000;50:321–329 [CrossRef][PubMed]
    [Google Scholar]
  38. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  39. Tindall BJ, Sikorski J, Smibert RA, Krieg NR, Reddy CA et al. Phenotypic Characterization and the Principles of Comparative Systematics Washington, DC: American Society for Microbiology Press; 2017
    [Google Scholar]
  40. Boontosaeng T, Nimrat S, Vuthiphandchai V. Pigments production of bacteria isolated from dried seafood and capability to inhibit microbial pathogens. IOSR J Environ Sci Toxicol Food Technol 2016;10:30–34
    [Google Scholar]
  41. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  42. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988;19:161–207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003299
Loading
/content/journal/ijsem/10.1099/ijsem.0.003299
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error