1887

Abstract

A Gram-stain-negative, non-spore-forming, motile, aerobic, curved rod shaped bacterium, designed strain C51, was isolated from coral (genus Porites) sampled at Weizhou Island, China. The optimal growth occurred in 2-3 % NaCl (w/v), at 25 °C and pH 8. Phylogenetic analyses based on the 16S rRNA gene, the gyrB gene and the Up-to-date Bacterial Core Gene set (92 genes) indicated that strain C51 forms a stable cluster with Shewanella spongiae KCTC 22492, and had 94 % 16S rRNA gene similarity to its closest type strain S. spongiae KCTC 22492. The only detected respiratory quinone was Q-8 and it could not produce menaquinone. The genome DNA G+C content was 40.1 mol%. The major cellular fatty acids were iso-C11:0 3-OH, iso-C15:0, C16:0, C16:1ω7c/ω6c, C18:0 and iso-C13:0 3-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unidentified aminolipids and three unidentified polar lipids. Its low genome DNA G+C content, lack of an aminolipid and a difference in its substrate oxidation ability indicated that strain C51 should represent a new species. Furthermore, its distinct phylogeny, Shewanella-specific FISH probe SHEW227 mismatch, lower cellular G+C content and inability to produce menaquinones indicated that the C51 clade should represent a new genus in the Shewanellaceae , for which the name Parashewanella gen. nov. is proposed, the type species is Parashewanella spongiae comb. nov., and another species is Parashewanella curva sp. nov. The type strains of Parashewanella spongiae and Parashewanella curva are HJ039 (=KCTC 22492=KCCM 42304=JCM 13830) and C51 (=MCCC 1K03463=KCTC 62318), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003298
2019-02-20
2020-01-21
Loading full text...

Full text loading...

References

  1. MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 1985;6:171–182 [CrossRef]
    [Google Scholar]
  2. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004;54:1773–1788 [CrossRef][PubMed]
    [Google Scholar]
  3. Yun BR, Park S, Kim MK, Park J, Kim SB. Shewanella saliphila sp. nov., Shewanella ulleungensis sp. nov. and Shewanella litoralis sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2018;68:2960–2966 [CrossRef][PubMed]
    [Google Scholar]
  4. Bowan JP. Genus XIII. Shewanella. In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 New York: Springer; 2005; pp.480–491
    [Google Scholar]
  5. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  6. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  7. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  10. Swofford DL. PAUP: Phylogenetic analysis using parsimony, 3.1.1version 3.1.1. Champaign, IL: Illinois Natural History Survey; 1993
    [Google Scholar]
  11. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  14. Rameshkumar N. The status of the species Shewanella irciniae Lee et al. 2006. Request for an opinion. Int J Syst Evol Microbiol 2015;65:2774 [CrossRef][PubMed]
    [Google Scholar]
  15. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  16. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  17. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20:265–272 [CrossRef][PubMed]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  20. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  21. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  22. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  23. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  24. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  25. Yang SH, Kwon KK, Lee HS, Kim SJ. Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2006;56:2879–2882 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee OO, Lau SC, Tsoi MM, Li X, Plakhotnikova I et al. Shewanella irciniae sp. nov., a novel member of the family Shewanellaceae, isolated from the marine sponge Ircinia dendroides in the Bay of Villefranche, Mediterranean Sea. Int J Syst Evol Microbiol 2006;56:2871–2877 [CrossRef][PubMed]
    [Google Scholar]
  27. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.345–401
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  29. Kamekura M. Lipids of extreme halophiles. In Vreeland RH, Hochstein LI. (editors) The Biology of Halophilic Bacteria Boca Raton: CRC Press; 1993; pp.135–161
    [Google Scholar]
  30. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  31. Khan ST, Harayama S. Paraferrimonas sedimenticola gen. nov., sp. nov., a marine bacterium of the family Ferrimonadaceae. Int J Syst Evol Microbiol 2007;57:1493–1498 [CrossRef][PubMed]
    [Google Scholar]
  32. Huang J, Huang Z, Shao Z. Paraferrimonas haliotis sp. nov., isolated from the intestine of abalone, Haliotis discus hannai and emendation of description of the genus Paraferrimonas. Int J Syst Evol Microbiol 2017;67:5062–5066 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003298
Loading
/content/journal/ijsem/10.1099/ijsem.0.003298
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error