1887

Abstract

A novel bacterium with cells that were pinkish-cream-coloured, aerobic, rod-shaped, 0.62–1.00 µm wide and 2.3–3.3 µm long, designated as strain MEBiC09517, was isolated from Buksung-Po, a small port in Incheon, Republic of Korea. Strain MEBiC09517 had low 16S rRNA gene sequence similarity to validly reported strains; among them, SAORIC-476 displayed highest sequence similarity (89.9 %). Nevertheless, the novel strain shared a phylogenetic line with members of the genus , not the genus . Optimum growth conditions of strain MEBiC09517 were at 50–55 °C, pH 7 and in 2.0–4.0 % salt concentration. Strain MEBiC09517 was found to be an obligate marine bacterium that requires KCl, MgCl and CaCl as well as NaCl for growth. A phosphatidylethanolamine, a diphosphatidylglycerol, three glycolipids and four unidentified lipids were the strain's predominant polar lipid components. The fatty acid of the cell wall mainly consisted of carbons with 16 or 18 chain lengths such as C, C, C and summed feature 3 (Cω6 and/or Cω7). The predominant menaquinone was MK-7. The DNA G+C content is 68.65 mol%. Strain MEBiC09517 differs from genera of the order in terms of fatty acid composition, growth conditions, and range of carbon source utilization. Based on phylogenetic analysis using the strain's 16S rRNA gene sequence and results of physiological tests, strain MEBiC09517 (KCCM=43267, JCM=32374) is proposed as gen. nov., sp. nov. Additionally, the novel family fam. nov. based on phylogenetic analysis and physiological characteristics is suggested.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003293
2019-02-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/4/1213.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003293&mimeType=html&fmt=ahah

References

  1. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article][PubMed]
    [Google Scholar]
  2. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-Based taxonomic classification of Bacteroidetes . Front Microbiol 2016; 7: [View Article][PubMed]
    [Google Scholar]
  3. Ludwig W, Euzeby J, Whitman WB. Family I Rhodothermaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd. vol. 4 New York: Springer; 2011 pp. 457–465
    [Google Scholar]
  4. Goh KM, Chan KG, Lim SW, Liew KJ, Chan CS et al. Genome analysis of a new rhodothermaceae strain isolated from a hot spring. Front Microbiol 2016; 7:7 [View Article][PubMed]
    [Google Scholar]
  5. Britschgi TB, Giovannoni SJ. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 1991; 57:1707–1713[PubMed]
    [Google Scholar]
  6. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  8. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–625 [View Article][PubMed]
    [Google Scholar]
  10. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism vol. 3 New York: Academic Press; 1969 pp. 21–132
    [Google Scholar]
  11. Guindon S, Gascuel O, A Simple GO. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article][PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  13. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  14. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  15. Bae SS, Kwon KK, Yang SH, Lee HS, Kim SJ et al. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome . Int J Syst Evol Microbiol 2007; 57:1050–1054 [View Article][PubMed]
    [Google Scholar]
  16. Zobell CE. Studies on marine bacteria. 1-The cultural requirements of heterotrophic aerobes. J Mar Res 1947; 4:42–75
    [Google Scholar]
  17. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note. vol. 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  18. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  19. Yang SH, Seo HS, Oh HM, Kim SJ, Lee JH et al. Brumimicrobium mesophilum sp. nov., isolated from a tidal flat sediment, and emended descriptions of the genus Brumimicrobium and Brumimicrobium glaciale. Int J Syst Evol Microbiol 2013; 63:1105–1110 [View Article][PubMed]
    [Google Scholar]
  20. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  21. Alfredsson GA, Kristjansson JK, Hjorleifsdottir S, Stetter KO. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. Microbiology 1988; 134:299–306 [View Article]
    [Google Scholar]
  22. Marteinsson VT, Bjornsdottir SH, Bienvenu N, Kristjansson JK, Birrien JL. Rhodothermus profundi sp. nov., a thermophilic bacterium isolated from a deep-sea hydrothermal vent in the Pacific Ocean. Int J Syst Evol Microbiol 2010; 60:2729–2734 [View Article][PubMed]
    [Google Scholar]
  23. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A. Salinibacter iranicus sp. nov. and Salinibacter luteus sp. nov., isolated from a salt lake, and emended descriptions of the genus Salinibacter and of Salinibacter ruber. Int J Syst Evol Microbiol 2012; 62:1521–1527 [View Article][PubMed]
    [Google Scholar]
  24. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R et al. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 2002; 52:485–491 [View Article][PubMed]
    [Google Scholar]
  25. Viver T, Orellana L, González-Torres P, Díaz S, Urdiain M et al. Genomic comparison between members of the Salinibacteraceae family, and description of a new species of Salinibacter (Salinibacter altiplanensis sp. nov.) isolated from high altitude hypersaline environments of the Argentinian Altiplano. Syst Appl Microbiol 2018; 41:198–212 [View Article][PubMed]
    [Google Scholar]
  26. Xia J, Dunlap CA, Flor-Weiler L, Rooney AP, Chen GJ et al. Longibacter salinarum gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2016; 66:3287–3292 [View Article][PubMed]
    [Google Scholar]
  27. Sorokin DY, Khijniak TV, Galinski EA, Kublanov IV. Natronotalea proteinilytica gen. nov., sp. nov. and Longimonas haloalkaliphila sp. nov., extremely haloalkaliphilic members of the phylum Rhodothermaeota from hypersaline alkaline lakes. Int J Syst Evol Microbiol 2017; 67:4161–4167 [View Article][PubMed]
    [Google Scholar]
  28. Xia J, Zhou YX, Zhao LH, Chen GJ, Zj D et al. Longibacter salinarum gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2015; 65:2272–2276
    [Google Scholar]
  29. Vaisman N, Oren A. Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes . Int J Syst Evol Microbiol 2009; 59:2571–2574 [View Article][PubMed]
    [Google Scholar]
  30. Park S, Yoshizawa S, Kogure K, Yokota A. Rubricoccus marinus gen. nov., sp. nov., of the family 'Rhodothermaceae', isolated from seawater. Int J Syst Evol Microbiol 2011; 61:2069–2072 [View Article]
    [Google Scholar]
  31. Park S, Song J, Yoshizawa S, Choi A, Cho JC et al. Rubrivirga marina gen. nov., sp. nov., a member of the family Rhodothermaceae isolated from deep seawater. Int J Syst Evol Microbiol 2013; 63:2229–2233 [View Article][PubMed]
    [Google Scholar]
  32. Song J, Joung Y, Park S, Cho JC, Kogure K. Rubrivirga profundi sp. nov., isolated from deep-sea water, and emended description of the genus Rubrivirga . Int J Syst Evol Microbiol 2016; 66:3253–3257 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003293
Loading
/content/journal/ijsem/10.1099/ijsem.0.003293
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error