1887

Abstract

A Gram-stain-negative, rod-shaped, motile bacterial strain, designated 3-5-3, was isolated from maize-cultivated soil artificially contaminated with cadmium, in Nanyang, Henan Province, China. Strain 3-5-3 was oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 3-5-3 was affiliated with the genus Paenibacillus and most closely related to Paenibacillus anaericanus MH2 (96.5 % similarity). The average nucleotide identity and digital DNA–DNA hybridization values between 3-5-3 and the closely related species ranged 69.4–84.5 % and 18.1–18.4 %. The genomic G+C content was 53.8 mol%. Anteiso-C15 : 0 was the major fatty acid and MK-7 was the only menaquinone. The diamino acid in the cell-wall peptidoglycan contains meso-diaminopimelic acid. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, two unidentified glycolipids, two unidentified aminolipids, one unidentified phospholipid, one unidentified phosphoaminolipid and six unidentified lipids. On the basis of the results obtained in this study, strain 3-5-3 is considered to represent a novel species of the genus Paenibacillus , for which the name Paenibacillus zei soli sp. nov. is proposed. The type strain is 3-5-3 (=CGMCC 1.13686=KCTC 33998).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003288
2019-02-15
2019-10-22
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64:253–260[PubMed]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  3. Huang Z, Zhao F, Li YH. Isolation of Paenibacillus tumbae sp. nov., from the tomb of the emperor Yang of the Sui dynasty, and emended description of the genus Paenibacillus. Antonie van Leeuwenhoek 2017;110:357–364 [CrossRef][PubMed]
    [Google Scholar]
  4. Priest FG. Genus I. Paenibacillus. In De Vos GP, Jones D, Krieg NR, Ludwig W, Rainey FA et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009; pp.269–295
    [Google Scholar]
  5. Ueda J, Yamamoto S, Kurosawa N. Paenibacillus thermoaerophilus sp. nov., a moderately thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol 2013;63:3330–3335 [CrossRef][PubMed]
    [Google Scholar]
  6. Parte AC. LPSN - List of Prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  7. Huang Z, Dai W, Zhou Z, Wang G, Lin G et al. Paenibacillus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:243–247 [CrossRef][PubMed]
    [Google Scholar]
  8. Baik KS, Choe HN, Park SC, Kim EM, Seong CN. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2011;61:2763–2768 [CrossRef][PubMed]
    [Google Scholar]
  9. Tonouchi A, Tazawa D, Fujita T. Paenibacillus shirakamiensis sp. nov., isolated from the trunk surface of a Japanese oak (Quercus crispula). Int J Syst Evol Microbiol 2014;64:1763–1769 [CrossRef][PubMed]
    [Google Scholar]
  10. Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E et al. Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol Microbiol 2016;66:4628–4632 [CrossRef][PubMed]
    [Google Scholar]
  11. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 2005;55:1255–1265 [CrossRef][PubMed]
    [Google Scholar]
  12. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez JC et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015;65:4621–4626 [CrossRef][PubMed]
    [Google Scholar]
  13. Roux V, Fenner L, Raoult D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 2008;58:682–687 [CrossRef][PubMed]
    [Google Scholar]
  14. von der Weid I, Duarte GF, van Elsas JD, Seldin L. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 2002;52:2147–2153 [CrossRef][PubMed]
    [Google Scholar]
  15. Kämpfer P, Busse HJ, Mcinroy JA, Hu CH, Kloepper JW et al. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017;67:1058–1063 [CrossRef][PubMed]
    [Google Scholar]
  16. Gao JL, Yuan M, Wang XM, Qiu TL, Lv FY, Fy L et al. Paenibacillus radicis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016;66:807–811 [CrossRef][PubMed]
    [Google Scholar]
  17. Gao JL, Lv FY, Wang XM, Qiu TL, Yuan M et al. Paenibacillus wenxiniae sp. nov., a nifH gene -harbouring endophytic bacterium isolated from maize. Antonie van Leeuwenhoek 2015;108:1015–1022 [CrossRef][PubMed]
    [Google Scholar]
  18. Kämpfer P, Busse HJ, Mcinroy JA, Hu CH, Kloepper JW et al. Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 2017;67:4956–4961 [CrossRef][PubMed]
    [Google Scholar]
  19. Liu Y, Zhai L, Wang R, Zhao R, Zhang X et al. Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2015;65:4533–4538 [CrossRef][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  27. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  32. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575[PubMed]
    [Google Scholar]
  33. Liu B, Liu GH, Sengonca C, Schumann P, Wang JP et al. Bacillus praedii sp. nov., isolated from purplish paddy soil. Int J Syst Evol Microbiol 2017;67:2823–2828 [CrossRef][PubMed]
    [Google Scholar]
  34. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  35. Dong XZ, Cai MY. Determination of biochemical properties. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  36. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  38. Schumann P. Peptidoglykan structure. In Oren A. (editor) Methods in Microbiology (Taxonomy of Prokaryotes)vol. 38 London: Academic Press; 2011; pp.101–129
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  40. Tindall BJ. A cmparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  41. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  42. Im WT, Yi KJ, Lee SS, Moon HI, Jeon CO et al. Paenibacillus konkukensis sp. nov., isolated from animal feed. Int J Syst Evol Microbiol 2017;67:2343–2348 [CrossRef][PubMed]
    [Google Scholar]
  43. Glaeser SP, Falsen E, Busse HJ, Kämpfer P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 2013;63:777–782 [CrossRef][PubMed]
    [Google Scholar]
  44. Kittiwongwattana C, Thawai C. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015;65:107–112 [CrossRef][PubMed]
    [Google Scholar]
  45. Lai WA, Hameed A, Lin SY, Hung MH, Hsu YH et al. Paenibacillus medicaginis sp. nov. a chitinolytic endophyte isolated from a root nodule of alfalfa (Medicago sativa L.). Int J Syst Evol Microbiol 2015;65:3853–3860 [CrossRef][PubMed]
    [Google Scholar]
  46. Kim BC, Jeong WJ, Kim DY, Oh HW, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2009;59:1002–1006 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003288
Loading
/content/journal/ijsem/10.1099/ijsem.0.003288
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error