1887

Abstract

A Gram-stain-negative, aerobic, non-flagellated, non-motile bacterium, designated strain WRN-8, was isolated from marine sediment of the Yellow Sea, China (36° 5′ 33′′ N, 121° 20′ 37′′ E). Colonies of strain WRN-8 were 0.2–0.3 µm wide, 2.1–2.8 µm long, catalase-positive and oxidase-positive. Colonies on marine agar solid media were circular, wet, smooth, light yellow and approximately 1.3 mm in diameter. Growth occurred optimally at 33–37 °C, pH 7.0–7.5 and in the presence of 2–4 % NaCl (w/v). Phylogenetic analysis of the 16S rRNA gene indicated that strain WRN-8 is a member of the genus within the family , and the closest described neighbour in terms of 16S rRNA gene sequence identity is KCTC 52569 (98.1 %). The major respiratory quinone of strain WRN-8 is Q-8, its predominant fatty acids are iso-C, iso-C, C, iso-C3-OH and summed feature 3 (Cω6 and/or Cω7), and its major polar lipids are phosphatidylethanolamine, phosphatidylglycerol, glycolipid, an unidentified phospholipid and an unidentified lipid. The draft genome obtained in this study was 3 643 020 bp, and the G+C content was 59.2 mol%. DNA–DNA hybridization (<46.3 %) and average nucleotide identity (<86.7 %) values between strain WRN-8 and the closest-related recognized species confirmed the novelty of this new species. Therefore, we propose a novel species in the genus to accommodate the novel isolate: sp. nov. (type strain WRN-8=KCTC 42989=ACCC 19926).

Funding
This study was supported by the:
  • National Key Research and Development Program of China (Award 2017YFD0201401)
  • National Natural Science Foundation of China (Award NSFC No. 31670113)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003279
2019-02-19
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/4/1135.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003279&mimeType=html&fmt=ahah

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997; 47:369–376 [View Article][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Camacho M, del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P et al. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016; 66:1844–1850 [View Article][PubMed]
    [Google Scholar]
  4. Park S, Yoon SY, Ha MJ, Yoon JH. Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:1436–1441 [View Article][PubMed]
    [Google Scholar]
  5. Yoon JH, Kimig S, Kangkh P, Sp M. nov., a moderate halophile isolated froma Korean salt marsh. Int J Syst Evol Microbiol 2003; 53:53–57
    [Google Scholar]
  6. Yoon JH, Kim H, Kang KH, Oh TK, Park YH. Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 2003; 53:1357–1361 [View Article][PubMed]
    [Google Scholar]
  7. Yoon JH, Kim IG, Oh TK, Park YH. Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 2004; 54:1111–1116 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  9. Lanyí B. Classical and rapid identification methods for medicallyimportant bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  10. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  11. Barrow GI, Cowan F. Steel’s Manual for Theidentification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  12. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  13. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27:863–864 [View Article][PubMed]
    [Google Scholar]
  14. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  15. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  16. Liu B, Shi Y, Yuan J, Hu X, Zhang H et al. Estimation of genomiccharacteristics by analyzing k–mer frequency in de novo genome projects. arXiv preprint arXiv 2012; 2013:1308
    [Google Scholar]
  17. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  18. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  19. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article][PubMed]
    [Google Scholar]
  20. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  22. Auch AF, Henz SR, Holland BR, Göker M. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics 2006; 7:350 [View Article][PubMed]
    [Google Scholar]
  23. Vincent L, Richard D, Olivier G. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny Inference Program. Molecular Biology and Evolution 2015; 10:32
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  25. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article][PubMed]
    [Google Scholar]
  26. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J SystEvolMicrobiol 2007; 57:81–91
    [Google Scholar]
  29. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  31. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  33. Wayne LG, Brenner J, Colwell RR, Grimont PAD, Kandler O et al. International Committee on SystematicBacteriology. Report of the ad hoc committee on reconciliation ofapproaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  36. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  37. Tindall BJ, Sikorski J, SmibertRM KNR. Phenotypic characterization and the principles of comparativesystematics. Methods for General and Molecular Microbiology, 3rd ed. 2007 pp. 330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003279
Loading
/content/journal/ijsem/10.1099/ijsem.0.003279
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error