1887

Abstract

A Gram-stain-negative, aerobic, non-flagellated, non-motile bacterium, designated strain WRN-8, was isolated from marine sediment of the Yellow Sea, China (36° 5′ 33′′ N, 121° 20′ 37′′ E). Colonies of strain WRN-8 were 0.2–0.3 µm wide, 2.1–2.8 µm long, catalase-positive and oxidase-positive. Colonies on marine agar solid media were circular, wet, smooth, light yellow and approximately 1.3 mm in diameter. Growth occurred optimally at 33–37 °C, pH 7.0–7.5 and in the presence of 2–4 % NaCl (w/v). Phylogenetic analysis of the 16S rRNA gene indicated that strain WRN-8 is a member of the genus Microbulbifer within the family Microbulbiferaceae , and the closest described neighbour in terms of 16S rRNA gene sequence identity is Microbulbifer aestuariivivens KCTC 52569 (98.1 %). The major respiratory quinone of strain WRN-8 is Q-8, its predominant fatty acids are iso-C15 : 0, iso-C17 : 0, C16 : 0, iso-C11 : 03-OH and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), and its major polar lipids are phosphatidylethanolamine, phosphatidylglycerol, glycolipid, an unidentified phospholipid and an unidentified lipid. The draft genome obtained in this study was 3 643 020 bp, and the G+C content was 59.2 mol%. DNA–DNA hybridization (<46.3 %) and average nucleotide identity (<86.7 %) values between strain WRN-8 and the closest-related recognized Microbulbifer species confirmed the novelty of this new species. Therefore, we propose a novel species in the genus Microbulbifer to accommodate the novel isolate: Microbulbifer flavimaris sp. nov. (type strain WRN-8=KCTC 42989=ACCC 19926).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003279
2019-02-19
2019-10-21
Loading full text...

Full text loading...

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997;47:369–376 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Camacho M, del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P et al. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016;66:1844–1850 [CrossRef][PubMed]
    [Google Scholar]
  4. Park S, Yoon SY, Ha MJ, Yoon JH. Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:1436–1441 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon JH, Kimig S, Kangkh P, Sp M. nov., a moderate halophile isolated froma Korean salt marsh. Int J Syst Evol Microbiol 2003;53:53–57
    [Google Scholar]
  6. Yoon JH, Kim H, Kang KH, Oh TK, Park YH. Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 2003;53:1357–1361 [CrossRef][PubMed]
    [Google Scholar]
  7. Yoon JH, Kim IG, Oh TK, Park YH. Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 2004;54:1111–1116 [CrossRef][PubMed]
    [Google Scholar]
  8. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  9. Lanyí B. Classical and rapid identification methods for medicallyimportant bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  10. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  11. Barrow GI, Cowan F. Steel’s Manual for Theidentification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  12. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  13. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011;27:863–864 [CrossRef][PubMed]
    [Google Scholar]
  14. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  15. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20:265–272 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu B, Shi Y, Yuan J, Hu X, Zhang H et al. Estimation of genomiccharacteristics by analyzing k–mer frequency in de novo genome projects. arXiv preprint arXiv 2012;2013:1308
    [Google Scholar]
  17. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  18. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  19. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  20. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Auch AF, Henz SR, Holland BR, Göker M. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics 2006;7:350 [CrossRef][PubMed]
    [Google Scholar]
  23. Vincent L, Richard D, Olivier G. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny Inference Program. Molecular Biology and Evolution 2015;10:32
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  25. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  26. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J SystEvolMicrobiol 2007;57:81–91
    [Google Scholar]
  29. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5:R12 [CrossRef][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  31. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne LG, Brenner J, Colwell RR, Grimont PAD, Kandler O et al. International Committee on SystematicBacteriology. Report of the ad hoc committee on reconciliation ofapproaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  36. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  37. Tindall BJ, Sikorski J, SmibertRM KNR. Phenotypic characterization and the principles of comparativesystematics. Methods for General and Molecular Microbiology, 3rd ed. 2007; pp.330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003279
Loading
/content/journal/ijsem/10.1099/ijsem.0.003279
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error