1887

Abstract

A psychrotolerant non-spore-forming sulfate-reducing bacterium, strain K3S, was isolated from a Yamal Peninsula cryopeg within permafrost. Strain K3S grew at subzero temperatures and required Na for growth. The new bacterium was able to use lactate, formate, pyruvate, fumarate, alanine, ethanol and molecular hydrogen as electron donors in the presence of sulfate, and used sulfate, sulfite, thiosulfate and elemental sulfur as electron acceptors in the presence of lactate. Fe(III)-citrate and Fe(III)-EDTA were reduced without visible growth. Major polar lipids were рhosphatidylserine, рhosphatidylethanolamine, phospholipids, cardiolipin and aminolipid; major cellular fatty acids were C16 : 1ω7, C16 : 0 and C18 : 1ω7; and the predominant isoprenoid quinone was MK-6 (H2). The genomic DNA G+C content was found to be 42.33 mol%. Phylogenetic analysis showed that the closest relative of the new isolate was Desulfovibrio ferrireducens strain 61 with 97.1 % 16S rRNA gene similarity. In addition, the ANI value between strain K3S and D. ferrireducens 61 was 82.1 %. On the basis of the genomic and polyphasic taxonomy data of strain K3S, we conclude that the strain is a representative of a novel species Desulfovibrio gilichinskyi sp. nov. (=VKM B-2877=DSM 100341).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003272
2019-02-08
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/4/1081.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003272&mimeType=html&fmt=ahah

References

  1. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L et al. Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 2005;53:117–128 [CrossRef][PubMed]
    [Google Scholar]
  2. Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Pecheritsyna SA, Laurinavichius KS et al. Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 2005;9:239–246 [CrossRef][PubMed]
    [Google Scholar]
  3. Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D et al. Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 2006;56:1285–1291 [CrossRef][PubMed]
    [Google Scholar]
  4. Shcherbakova VA, Chuvil'skaia NA, Rivkina EM, Pecheritsyna SA, Suetin SV et al. Novel halotolerant bacterium from cryopeg in permafrost: description of Psychrobacter muriicola sp. nov. Mikrobiologiia 2009;78:84–91 in Russian [CrossRef]
    [Google Scholar]
  5. Shcherbakova V, Chuvilskaya N, Rivkina E, Demidov N, Uchaeva V et al. Celerinatantimonas yamalensis sp. nov., a cold-adapted diazotrophic bacterium from a cold permafrost brine. Int J Syst Evol Microbiol 2013;63:4421–4427 [CrossRef][PubMed]
    [Google Scholar]
  6. Pecheritsyna SA, Rivkina EM, Akimov VN, Shcherbakova VA, Sp D. nov., a psychrotolerant sulfate-reducing bacterium from a cryopeg. Int J Syst Evol Microbiol 2012;62:33–37
    [Google Scholar]
  7. Gilichinsky D, Khlebnikova G, Zvyagintsev D, Fyodorov-Davydov D, Kudryavtseva N. Microbiological characterization by studying sedimentary deposits of cryolithozone. Izvestiya AN SSSR, Ser. Geol 1989;6:103–115 in Russian
    [Google Scholar]
  8. Shi T, Reeves RH, Gilichinsky DA, Friedmann EI. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 1997;33:169–179 [CrossRef][PubMed]
    [Google Scholar]
  9. Razumov AS. Water microbial plankton. Procc of Hydrobiol Society 1962;12:60–190 in Russian
    [Google Scholar]
  10. Pankhurst ES. The isolation and enumeration of sulphate-reducing bacteria. In Isolation of anaerobes Shepton DA. (editor)vol. 5 Board GG: New York: Academic Press; 1971; pp.223–240
    [Google Scholar]
  11. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963;238:2882–2886[PubMed]
    [Google Scholar]
  12. Kevbrin V, Zavarzin G. Effect of sulfur compounds on the growth of the halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology 1992;61:563–567
    [Google Scholar]
  13. Ryzhmanova Y, Nepomnyashchaya Y, Abashina T, Ariskina E, Troshina O et al. New sulfate-reducing bacteria isolated from Buryatian alkaline brackish lakes: description of Desulfonatronum buryatense sp. nov. Extremophiles 2013;17:851–859 [CrossRef][PubMed]
    [Google Scholar]
  14. Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 1993;113:41–53 [CrossRef]
    [Google Scholar]
  15. Frolov EN, Kublanov IV, Toshchakov SV, Samarov NI, Novikov AA et al. Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site. Int J Syst Evol Microbiol 2017;67:1482–1485 [CrossRef][PubMed]
    [Google Scholar]
  16. Makula RA, Finnerty WR. Phospholipid composition of Desulfovibrio species. J Bacteriol 1974;120:1279–1283[PubMed]
    [Google Scholar]
  17. Postgate J. A diagnostic reaction of Desulphovibrio desulphuricans. Nature 1959;183:481–482 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Vandieken V, Knoblauch C, Jørgensen BB. Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J Syst Evol Microbiol 2006;56:681–685 [CrossRef][PubMed]
    [Google Scholar]
  21. Coleman ML, Hedrick DB, Lovley DR, White DC, Pye K. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 1993;361:436–438 [CrossRef]
    [Google Scholar]
  22. Li Y-L, Vali H, Sears SK, Yang J, Deng B et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim Cosmochim Acta 2004;68:3251–3260
    [Google Scholar]
  23. Kappes RM, Kempf B, Kneip S, Boch J, Gade J et al. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 1999;32:203–216 [CrossRef][PubMed]
    [Google Scholar]
  24. Iturriaga G, Suárez R, Nova-Franco B. Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 2009;10:3793–3810 [CrossRef][PubMed]
    [Google Scholar]
  25. Boch J, Nau-Wagner G, Kneip S, Bremer E. Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 1997;168:282–289 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003272
Loading
/content/journal/ijsem/10.1099/ijsem.0.003272
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error