1887

Abstract

A lipolytic, Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated BPTF-M16, was isolated from tidal flat sediment on the Yellow Sea in the Republic of Korea. Strain BPTF-M16 grew optimally at 30 °C and in the presence of 2.0–3.0 % (w/v) NaCl. A phylogenetic tree of 16S rRNA gene sequences showed that strain BPTF-M16 fell within the clade comprising the type strains of species. Strain BPTF-M16 exhibited 16S rRNA gene sequence similarity values of 98.0 and 97.1 % to the type strains of and , respectively, and of less than 97.0 % to the type strains of the other recognized species. Strain BPTF-M16 contained Q-10 as the predominant ubiquinone and C 7 as the major fatty acid. The major polar lipids detected in strain BPTF-M16 were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and one unidentified glycolipid. Mean DNA–DNA relatedness values of strain BPTF-M16 with the type strains of and were 22 and 13 %, respectively. The average nucleotide identity value between strain BPTF-M16 and the type strain of was 76.80 %. Differential phenotypic properties, together with the phylogenetic and genetic data, revealed that strain BPTF-M16 is separated from recognized species. On the basis of the data presented here, strain BPTF-M16 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BPTF-M16 (=KCTC 62421=KACC 19609=NBRC 113190).

Funding
This study was supported by the:
  • , National Institute of Biological Resources , (Award project on survey of indigenous species of Korea)
  • , Korea Research Institute of Bioscience and Biotechnology , (Award KRIBB Research Initiative Program)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003260
2019-01-31
2021-03-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/4/1009.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003260&mimeType=html&fmt=ahah

References

  1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon JH, Kang KH, Yeo SH, Oh TK. Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55:1167–1170 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [CrossRef]
    [Google Scholar]
  4. Lai Q, Yuan J, Shao Z. Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009; 59:2973–2976 [CrossRef][PubMed]
    [Google Scholar]
  5. Seo SH, Lee SD. Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2010; 60:307–311 [CrossRef][PubMed]
    [Google Scholar]
  6. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011; 61:2035–2039 [CrossRef][PubMed]
    [Google Scholar]
  7. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011; 61:2956–2961 [CrossRef][PubMed]
    [Google Scholar]
  8. Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2013; 63:93–97 [CrossRef][PubMed]
    [Google Scholar]
  9. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:116–121
    [Google Scholar]
  10. Lei X, Li Y, Chen Z, Zheng W, Lai Q et al. Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater. Int J Syst Evol Microbiol 2014; 64:631–637 [CrossRef][PubMed]
    [Google Scholar]
  11. Jung YT, Park S, Lee JS, Yoon JH. Altererythrobacter aestiaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:3943–3949 [CrossRef][PubMed]
    [Google Scholar]
  12. Park S, Jung YT, Choi SJ, Yoon JH. Altererythrobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:3446–3451 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim JH, Yoon JH, Kim W. Altererythrobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:5424–5429 [CrossRef][PubMed]
    [Google Scholar]
  14. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008; 58:839–844 [CrossRef][PubMed]
    [Google Scholar]
  15. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol 2012; 62:28–32 [CrossRef][PubMed]
    [Google Scholar]
  16. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:2491–2496 [CrossRef][PubMed]
    [Google Scholar]
  17. Yuan N, Zeng Y, Feng H, Yu Z, Huang Y. Altererythrobacter xixiisoli sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2017; 67:3655–3659 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhao Q, Li HR, Han QQ, He AL, Nie CY et al. Altererythrobacter soli sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2017; 67:454–459 [CrossRef][PubMed]
    [Google Scholar]
  19. Yan ZF, Lin P, Won KH, Yang JE, Li CT et al. Altererythrobacter deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:3806–3811 [CrossRef]
    [Google Scholar]
  20. Dahal RH, Kim J. Altererythrobacter fulvus sp. nov., a novel alkalitolerant alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:1502–1508 [CrossRef][PubMed]
    [Google Scholar]
  21. Xue H, Piao CG, Guo MW, Wang LF, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol 2016; 66:4543–4548 [CrossRef][PubMed]
    [Google Scholar]
  22. Fidalgo C, Rocha J, Martins R, Proença DN, Morais PV et al. Altererythrobacter halimionae sp. nov. and Altererythrobacter endophyticus sp. nov., two endophytes from the salt marsh plant Halimione portulacoides . Int J Syst Evol Microbiol 2017; 67:3057–3062 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora Strains by the Use of Genomic DNA Fragments and rRNA Gene Probes. Int J Syst Bacteriol 1996; 46:502–505 [CrossRef]
    [Google Scholar]
  24. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S Ribosomal DNA for Rapid Identification of Saccharomonospora Strains. Int J Syst Bacteriol 1997; 47:111–114 [CrossRef]
    [Google Scholar]
  25. Yoon JH, Kang KH, Park YH. Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2003; 53:449–454 [CrossRef][PubMed]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  27. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  29. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric Deoxyribonucleic Acid-Deoxyribonucleic Acid Hybridization in Microdilution Wells as an Alternative to Membrane Filter Hybridization in which Radioisotopes Are Used To Determine Genetic Relatedness among Bacterial Strains. Int J Syst Bacteriol 1989; 39:224–229 [CrossRef]
    [Google Scholar]
  30. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 . Newark, DE: MIDI Inc 1990
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  33. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp. 121–161
    [Google Scholar]
  34. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [CrossRef]
    [Google Scholar]
  35. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  36. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987; 19:1–67
    [Google Scholar]
  37. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  38. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  39. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer: 1981 pp. 1302–1331
    [Google Scholar]
  40. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [CrossRef][PubMed]
    [Google Scholar]
  41. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942[PubMed]
    [Google Scholar]
  42. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  43. Stackebrandt E, Goebel BM. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003260
Loading
/content/journal/ijsem/10.1099/ijsem.0.003260
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error