1887

Abstract

A Gram-negative, aerobic, coccus-shaped, non-spore-forming bacterium, designated M2BS4Y-1, was isolated from a surface-sterilized leaf of Acrostichum aureum collected from Guangxi Zhuang Autonomous Region, China and investigated by a polyphasic approach to determine its taxonomic position. Strain M2BS4Y-1 grew optimally with 1 % (w/v) NaCl, at 30 °C and at pH 7.0–8.0. Substrate mycelia and aerial mycelia were not formed, and no diffusible pigments were observed on the media tested. Phylogenetic analysis based on its 16S rRNA gene sequence showed that strain M2BS4Y-1 was most closely related to species of the genus Aureimonas , and shared the highest 16S rRNA gene sequence similarity of 97.79 % to Aureimonas phyllosphaerae DSM 25026. The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) values between strain M2BS4Y-1 and A. phyllosphaerae DSM 25026 were 83.7 % and 26.5 %, respectively. The ANI and DDH values were below the recommended thresholds. The DNA G+C content of strain M2BS4Y-1 was 70.0 mol%. The cell-wall peptidoglycan contained meso-diaminobutyric acid and ubiquinone Q-10 was the respiratory lipoquinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, sulfoquinovosyldiacylglycerol, two unknown aminolipids, an unidentified phospholipid and four unidentified lipids, while the major fatty acids were C18 : 1ω7c and C16 : 0. On the basis of phylogenetic, chemotaxonomic and phenotyptic data, strain M2BS4Y-1 can be characterized to represent a novel species of the genus Aureimonas , for which the name Aureimonas flava sp. nov. is proposed. The type strain is M2BS4Y-1 (=KCTC 62837=CGMCC 1.13747).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003252
2019-01-21
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/846.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003252&mimeType=html&fmt=ahah

References

  1. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 2003; 53:1115–1122 [View Article][PubMed]
    [Google Scholar]
  2. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 2011; 61:2722–2728 [View Article][PubMed]
    [Google Scholar]
  3. Cho JC, Giovannoni SJ. Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order "Rhizobiales". Int J Syst Evol Microbiol 2003; 53:1853–1859 [View Article][PubMed]
    [Google Scholar]
  4. Rivas R, Sánchez-Márquez S, Mateos PF, Martínez-Molina E, Velázquez E et al. Martelella mediterranea gen. nov., sp. nov., a novel alpha-proteobacterium isolated from a subterranean saline lake. Int J Syst Evol Microbiol 2005; 55:955–959 [View Article][PubMed]
    [Google Scholar]
  5. Liang J, Liu J, Zhang XH. Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int J Syst Evol Microbiol 2015; 65:1127–1132 [View Article][PubMed]
    [Google Scholar]
  6. Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:1702–1708 [View Article][PubMed]
    [Google Scholar]
  7. Li FN, Tuo L, Pan Z, Guo M, Lee SM et al. Aureimonas endophytica sp. nov., a novel endophytic bacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 2017; 67:2934–2940 [View Article][PubMed]
    [Google Scholar]
  8. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016; 66:3345–3354 [View Article][PubMed]
    [Google Scholar]
  9. Li Y, Xu G, Lin C, Wang X, Piao CG. Aureimonas populi sp. nov., isolated from poplar tree bark. Int J Syst Evol Microbiol 2018; 68:487–491 [View Article][PubMed]
    [Google Scholar]
  10. Jurado V, Gonzalez JM, Laiz L, Saiz-Jimenez C. Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. Int J Syst Evol Microbiol 2006; 56:2583–2585 [View Article][PubMed]
    [Google Scholar]
  11. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 2013; 63:2430–2435 [View Article][PubMed]
    [Google Scholar]
  12. Kim MS, Hoa KT, Baik KS, Park SC, Seong CN et al. Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008; 58:1142–1146 [View Article][PubMed]
    [Google Scholar]
  13. Weon HY, Kim BY, Yoo SH, Joa JH, Lee KH et al. Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2007; 57:1717–1720 [View Article][PubMed]
    [Google Scholar]
  14. Cho Y, Lee I, Yang YY, Baek K, Yoon SJ et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol 2015; 65:3564–3569 [View Article][PubMed]
    [Google Scholar]
  15. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Aureimonas glaciei sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2017; 67:485–488 [View Article][PubMed]
    [Google Scholar]
  16. Li F, Gao C, Zhu L, Yu L, Qin M et al. [Diversity and cytotoxic activity of endophytic bacteria isolated from Sonneratia apetala of Maowei Sea]. Wei Sheng Wu Xue Bao 2016; 56:689–697[PubMed]
    [Google Scholar]
  17. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  27. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  28. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  29. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  30. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  31. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  32. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  35. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003252
Loading
/content/journal/ijsem/10.1099/ijsem.0.003252
Loading

Data & Media loading...

Supplements

Supplementary data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error