1887

Abstract

Comparative 16S rRNA gene sequence analysis and major physiological differences indicate two distinct sublineages within the genus Azoarcus : the Azoarcus evansii lineage, comprising Azoarcus evansii (type strain KB740=DSM 6898=CIP 109473=NBRC 107771), Azoarcus buckelii (type strain U120=DSM 14744=LMG 26916), Azoarcus anaerobius (type strain LuFRes1=DSM 12081=LMG 30943), Azoarcus tolulyticus (type strain Tol-4=ATCC 51758=CIP 109470), Azoarcus toluvorans (type strain Td21=ATCC 700604=DSM 15124) and Azoarcus toluclasticus (type strain MF63=ATCC 700605), and the Azoarcus indigens lineage, comprising Azoarcus indigens (type strain VB32=ATCC 51398=LMG 9092), Azoarcus communis (type strain SWub3=ATCC 51397=LMG 9095) and Azoarcus olearius (type strain DQS-4=BCRC 80407=KCTC 23918=LMG 26893). Az. evansii lineage members have remarkable anaerobic degradation capacities encompassing a multitude of alkylbenzenes, aromatic compounds and monoterpenes, often involving novel biochemical reactions. In contrast, Az. indigens lineage members are diazotrophic endophytes lacking these catabolic capacities. It is proposed that species of the Az. evansii lineage should be classified in a novel genus, Aromatoleum gen. nov. Finally, based on the literature and new growth, DNA–DNA hybridization and proteomic data, the following five new species are proposed: Aromatoleum aromaticum sp. nov. (type strain EbN1=DSM 19018=LMG 30748 and strain pCyN1=DSM 19016=LMG 31004), Aromatoleum petrolei sp. nov. (type strain ToN1=DSM 19019=LMG 30746), Aromatoleumbremense sp. nov. (type strain PbN1=DSM 19017=LMG 31005), Aromatoleum toluolicum sp. nov. (type strain T=DSM 19020=LMG 30751) and Aromatoleum diolicum sp. nov. (type strain 22Lin=DSM 15408=LMG 30750).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003244
2019-02-14
2019-12-12
Loading full text...

Full text loading...

References

  1. Harayama S, Kok M, Neidle EL. Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 1992;46:565–601 [CrossRef][PubMed]
    [Google Scholar]
  2. Heider J, Fuchs G. Anaerobic metabolism of aromatic compounds. Eur J Biochem 1997;243:577–596 [CrossRef][PubMed]
    [Google Scholar]
  3. Harwood CS, Burchhardt G, Herrmann H, Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 1998;22:439–458 [CrossRef]
    [Google Scholar]
  4. Widdel F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 2001;12:259–276 [CrossRef][PubMed]
    [Google Scholar]
  5. Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W et al. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 2016;26:5–28 [CrossRef][PubMed]
    [Google Scholar]
  6. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E et al. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 1993;43:135–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 1995;45:327–333 [CrossRef][PubMed]
    [Google Scholar]
  8. Mechichi T, Stackebrandt E, Gad'on N, Fuchs G. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 2002;178:26–35 [CrossRef][PubMed]
    [Google Scholar]
  9. Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM. Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 2001;51:589–602 [CrossRef][PubMed]
    [Google Scholar]
  10. Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA et al. Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 1999;49:1045–1051 [CrossRef][PubMed]
    [Google Scholar]
  11. Foss S, Harder J. Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol 1998;21:365–373 [CrossRef][PubMed]
    [Google Scholar]
  12. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 1993;43:574–584 [CrossRef]
    [Google Scholar]
  13. Faoro H, Menegazzo RR, Battistoni F, Gyaneshwar P, do Amaral FP et al. The oil-contaminated soil diazotroph Azoarcus olearius DQS-4T is genetically and phenotypically similar to the model grass endophyte Azoarcus sp. BH72. Environ Microbiol Rep 2017;9:223–238 [CrossRef][PubMed]
    [Google Scholar]
  14. Chen MH, Sheu SY, James EK, Young CC, Chen WM. Azoarcus olearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2013;63:3755–3761 [CrossRef][PubMed]
    [Google Scholar]
  15. Springer N, Ludwig W, Philipp B, Schink B. Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol 1998;48:953–956 [CrossRef][PubMed]
    [Google Scholar]
  16. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 1995;45:500–506 [CrossRef][PubMed]
    [Google Scholar]
  17. Song B, Häggblom MM, Zhou J, Tiedje JM, Palleroni NJ. Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 1999;49:1129–1140 [CrossRef][PubMed]
    [Google Scholar]
  18. Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 2000;50:649–659 [CrossRef][PubMed]
    [Google Scholar]
  19. Boll M, Fuchs G, Heider J. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 2002;6:604–611 [CrossRef][PubMed]
    [Google Scholar]
  20. Heider J, Spormann AM, Beller HR, Widdel F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 1998;22:459–473 [CrossRef]
    [Google Scholar]
  21. Hylemon PB, Harder J. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev 1998;22:475–488 [CrossRef][PubMed]
    [Google Scholar]
  22. Spormann AM, Widdel F. Metabolism of alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 2000;11:85–105 [CrossRef]
    [Google Scholar]
  23. Rabus R. Biodegradation of hydrocarbons under anoxic conditions. Petroleum Microbiology American Society of Microbiology; 2005; pp.277–300
    [Google Scholar]
  24. Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 1995;163:96–103 [CrossRef][PubMed]
    [Google Scholar]
  25. Harms G, Rabus R, Widdel F. Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch Microbiol 1999;172:303–312 [CrossRef][PubMed]
    [Google Scholar]
  26. Rabus R, Nordhaus R, Ludwig W, Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 1993;59:1444–1451[PubMed]
    [Google Scholar]
  27. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. In Balows AT, Trüper HG, Dworkin M, Harder W, Schleifer K-H. (editors) The Prokaryotes, 2nd ed. New York: Springer; 1992; pp.3352–3378
    [Google Scholar]
  28. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M et al. Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 1987;37:43–51 [CrossRef]
    [Google Scholar]
  29. Zehr JP, McReynolds LA. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 1989;55:2522–2526[PubMed]
    [Google Scholar]
  30. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  31. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  33. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998;48:179–186 [CrossRef][PubMed]
    [Google Scholar]
  34. Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ et al. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2003;53:93–97 [CrossRef][PubMed]
    [Google Scholar]
  35. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  36. Jolliffe IT. Principal Component Analysis, 2nd ed. Springer; 2002
    [Google Scholar]
  37. Fries MR, Zhou J, Chee-Sanford J, Tiedje JM. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 1994;60:2802–2810[PubMed]
    [Google Scholar]
  38. Harder J. Anaerobic degradation of cyclohexane-1,2-diol by a new Azoarcus species. Arch Microbiol 1997;168:199–204 [CrossRef]
    [Google Scholar]
  39. Altenschmidt U, Oswald B, Fuchs G. Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. J Bacteriol 1991;173:5494–5501 [CrossRef][PubMed]
    [Google Scholar]
  40. Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J et al. Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1. Proteomics 2007;7:2222–2239 [CrossRef][PubMed]
    [Google Scholar]
  41. Hirsch W, Schägger H, Fuchs G. Phenylglyoxylate:NAD+ oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii. Eur J Biochem 1998;251:907–915 [CrossRef][PubMed]
    [Google Scholar]
  42. Kniemeyer O, Heider J. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 2001;276:21381–21386 [CrossRef][PubMed]
    [Google Scholar]
  43. Beller HR, Spormann AM. Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 1997;179:670–676 [CrossRef][PubMed]
    [Google Scholar]
  44. Johnson HA, Pelletier DA, Spormann AM. Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 2001;183:4536–4542 [CrossRef][PubMed]
    [Google Scholar]
  45. Rabus R, Kube M, Beck A, Widdel F, Reinhardt R. Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 2002;178:506–516 [CrossRef][PubMed]
    [Google Scholar]
  46. Kube M, Heider J, Amann J, Hufnagel P, Kühner S et al. Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch Microbiol 2004;181:182–194 [CrossRef][PubMed]
    [Google Scholar]
  47. Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C et al. Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 2005;187:1493–1503 [CrossRef][PubMed]
    [Google Scholar]
  48. Rabus R, Widdel F. Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl Environ Microbiol 1996;62:1238–1241[PubMed]
    [Google Scholar]
  49. Rabus R, Wilkes H, Schramm A, Harms G, Behrends A et al. Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the β-subclass of Proteobacteria. Environ Microbiol 1999;1:145–157 [CrossRef][PubMed]
    [Google Scholar]
  50. Pelz O, Chatzinotas A, Andersen N, Bernasconi SM, Hesse C et al. Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch Microbiol 2001;175:270–281 [CrossRef][PubMed]
    [Google Scholar]
  51. Reusser DE, Istok JD, Beller HR, Field JA. In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ Sci Technol 2002;36:4127–4134 [CrossRef][PubMed]
    [Google Scholar]
  52. Head IM, Jones DM, Larter SR. Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003;426:344–352 [CrossRef][PubMed]
    [Google Scholar]
  53. Eady RR. Structurefunction relationships of alternative nitrogenases. Chem Rev 1996;96:3013–3030 [CrossRef][PubMed]
    [Google Scholar]
  54. Tan Z, Hurek T, Reinhold-Hurek B. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 2003;5:1009–1015 [CrossRef][PubMed]
    [Google Scholar]
  55. Fernández H, Prandoni N, Fernández-Pascual M, Fajardo S, Morcillo C et al. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS One 2014;9:e110771 [CrossRef][PubMed]
    [Google Scholar]
  56. Rabus R, Kube M, Heider J, Beck A, Heitmann K et al. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 2005;183:27–36 [CrossRef][PubMed]
    [Google Scholar]
  57. Rabus R. Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Appl Microbiol Biotechnol 2005;68:580–587 [CrossRef][PubMed]
    [Google Scholar]
  58. Rabus R, Trautwein K, Wöhlbrand L. Towards habitat-oriented systems biology of "Aromatoleum aromaticum" EbN1: chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation. Appl Microbiol Biotechnol 2014;98:3371–3388
    [Google Scholar]
  59. Özcan A, Pausch P, Linden A, Wulf A, Schühle K et al. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Nat Microbiol 2019;4:89–96 [CrossRef]
    [Google Scholar]
  60. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T et al. Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 2006;24:1–7 [CrossRef][PubMed]
    [Google Scholar]
  61. Martín-Moldes Z, Zamarro MT, del Cerro C, Valencia A, Gómez MJ et al. Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol 2015;38:462–471 [CrossRef][PubMed]
    [Google Scholar]
  62. Reinhold B, Hurek T, Niemann EG, Fendrik I. Close association of Azospirillum and diazotrophic rods with different root zones of kallar grass. Appl Environ Microbiol 1986;52:520–526[PubMed]
    [Google Scholar]
  63. Engelhard M, Hurek T, Reinhold-Hurek B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2000;2:131–141 [CrossRef][PubMed]
    [Google Scholar]
  64. Hurek T, Handley LL, Reinhold-Hurek B, Piché Y. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 2002;15:233–242 [CrossRef][PubMed]
    [Google Scholar]
  65. Heider J, Boll M, Breese K, Breinig S, Ebenau-Jehle C et al. Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch Microbiol 1998;170:120–131 [CrossRef][PubMed]
    [Google Scholar]
  66. Lay JO. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 2001;20:172–194 [CrossRef][PubMed]
    [Google Scholar]
  67. Arnold RJ, Reilly JP. Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal Biochem 1999;269:105–112 [CrossRef][PubMed]
    [Google Scholar]
  68. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 2001;20:157–171 [CrossRef][PubMed]
    [Google Scholar]
  69. Braun K, Gibson DT. Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol 1984;48:102–107[PubMed]
    [Google Scholar]
  70. Tschech A, Fuchs G. Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 1987;148:213–217 [CrossRef][PubMed]
    [Google Scholar]
  71. Gorny N, Wahl G, Brune A, Schink B. A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds. Arch Microbiol 1992;158:48–53 [CrossRef][PubMed]
    [Google Scholar]
  72. Dolfing J, Zeyer J, Binder-Eicher P, Schwarzenbach RP. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 1990;154:336–341 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003244
Loading
/content/journal/ijsem/10.1099/ijsem.0.003244
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error