1887

Abstract

A Gram-stain-positive, rod-shaped, endospore-forming, motile and aerobic bacterial isolate, designated strain K2E09-144, was obtained from animal faeces that were collected from a karst cave in Guizhou province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K2E09-144 represents a novel member of the genus Cohnella within the family Paenibacillaceae of the phylum Firmicutes . Strain K2E09-144 was phylogenetically closely related to Cohnella nanjingensis D45 (16S rRNA gene sequence similarity 97.0 %). The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and C16 : 0. The major isoprenoid quinone was menaqinone 7 (MK-7). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified phospholipid, four unidentified aminophospholipids, one glycolipid and one unidentified lipid. The isomer type of diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The genome of strain K2E09-144 comprised 6.43 Mb, and encoded 6029 genes in total. The DNA G+C content of the genomic DNA was 53.3 mol%. Based on its phylogenetic, phenotypic and chemotaxonomic characteristics, strain K2E09-144 is considered to represent a novel species of the genus Cohnella , for which the name Cohnella faecalis sp. nov. is proposed. The type strain is K2E09-144 (=CGMCC 1.13587=NBRC 113454).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003228
2019-01-09
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/572.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003228&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  2. García-Fraile P, Velázquez E, Mateos PF, Martínez-Molina E, Rivas R. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 2008;58:1855–1859 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon MH, Ten LN, Im WT. Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 2007;17:913–918[PubMed]
    [Google Scholar]
  4. Cai F, Wang Y, Qi H, Dai J, Yu B et al. Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 2010;60:1605–1608 [CrossRef][PubMed]
    [Google Scholar]
  5. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 2010;60:2913–2917 [CrossRef][PubMed]
    [Google Scholar]
  6. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010;60:2284–2287 [CrossRef][PubMed]
    [Google Scholar]
  7. Kim SJ, Weon HY, Kim YS, Anandham R, Jeon YA et al. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010;60:526–530 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim SJ, Weon HY, Kim YS, Kwon SW. Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. Isolated from soil samples in Korea. J Microbiol 2011;49:1033–1038 [CrossRef][PubMed]
    [Google Scholar]
  9. Jiang F, Dai J, Wang Y, Xue X, Xu M et al. Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012;62:817–821 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon JH, Jung YT. Cohnella boryungensis sp. nov., isolated from soil. Antonie van Leeuwenhoek 2012;101:769–775 [CrossRef][PubMed]
    [Google Scholar]
  11. Huang Z, Yu YJ, Bao YY, Xia L, Sheng XF et al. Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014;64:3320–3324 [CrossRef][PubMed]
    [Google Scholar]
  12. Lee KC, Kim KK, Kim JS, Kim DS, Ko SH et al. Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015;65:3125–3130 [CrossRef][PubMed]
    [Google Scholar]
  13. Choi JH, Seok JH, Jang HJ, Cha JH, Cha CJ. Cohnella saccharovorans sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016;66:1713–1717 [CrossRef][PubMed]
    [Google Scholar]
  14. Shiratori H, Tagami Y, Beppu T, Ueda K. Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 2010;60:1344–1348 [CrossRef][PubMed]
    [Google Scholar]
  15. Hameed A, Hung MH, Lin SY, Hsu YH, Liu YC et al. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 2013;63:2806–2812 [CrossRef][PubMed]
    [Google Scholar]
  16. Flores-Félix JD, Carro L, Ramírez-Bahena MH, Tejedor C, Igual JM et al. Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 2014;64:83–87 [CrossRef][PubMed]
    [Google Scholar]
  17. Kämpfer P, Glaeser SP, McInroy JA, Busse HJ. Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays. Int J Syst Evol Microbiol 2014;64:1811–1816 [CrossRef][PubMed]
    [Google Scholar]
  18. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 2012;62:1921–1925 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee Y, Jeon CO. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017;67:4767–4772 [CrossRef][PubMed]
    [Google Scholar]
  20. Kämpfer P, Glaeser SP, Busse HJ. Cohnella lubricantis sp. nov., isolated from a coolant lubricant solution. Int J Syst Evol Microbiol 2017;67:466–471 [CrossRef][PubMed]
    [Google Scholar]
  21. Kudryashova EB, Karlyshev AV, Ariskina EV, Streshinskaya GM, Vinokurova NG et al. Cohnella kolymensis sp. nov., a novel bacillus isolated from Siberian permafrost.. Int J Syst Evol Microbiol 2018;68:2912–2917
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  29. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  30. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  32. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921;6:395–397[PubMed]
    [Google Scholar]
  33. Cerny G. Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:113–122 [CrossRef]
    [Google Scholar]
  34. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. 1990
    [Google Scholar]
  36. Collins MD, Goodfellow M. Isoprenoid quinone analysis in bacterial classification and identification. J Gen Microbiol 1979;110:127–136
    [Google Scholar]
  37. Schön R, Groth I. Practical thin layer chromatography techniques for diaminopimelic acid and whole cell sugar analyses in the classification of environmental actinomycetes. J Basic Microbiol 2006;46:243–249 [CrossRef][PubMed]
    [Google Scholar]
  38. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  39. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  40. Lam KK, Labutti K, Khalak A, Tse D. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads. Bioinformatics 2015;31:3207–3209 [CrossRef][PubMed]
    [Google Scholar]
  41. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  43. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  44. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013;14:913 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003228
Loading
/content/journal/ijsem/10.1099/ijsem.0.003228
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error