Histidinibacterium lentulum gen. nov., sp. nov., a marine bacterium from the culture broth of marine microalga Picochlorum sp. 122 Free

Abstract

A Gram-stain-negative, non-spore-forming, aerobic, motile, ovoid or short rod shaped bacterium, designed strain B17, was isolated from the culture broth of Picochlorum sp. 122. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain B17 forms a stable cluster with Oceanicolagranulosus MCCC 1A10589 (with the highest 16S rRNA gene similarity of 95.8 %) and Roseisalinusantarcticus DSM 11466 in the family Rhodobacteraceae . The only detected respiratory quinone was Q-10. The major cellular fatty acids were C18 : 1 ω7c/ω6c, C17 : 1iso I/anteiso B and C16 : 0. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid and two unidentified lipids. The genome G+C content was 69 mol%. Characteristics, such as a long lag phase, being motile with single polar flagellum, no aminolipid content, and little or no C18 : 1ω7c11-methyl and C19 : 0cyclo ω8c content could significantly distinguish strain B17 from its closely related type strains. Therefore strain B17 is suggested to represent a new species in a new genus, for which Histidinibacterium lentulum gen. nov., sp. nov. is proposed. The type strain B17 (=MCCC 1K03225=KCTC 52553).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003225
2019-01-21
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/578.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003225&mimeType=html&fmt=ahah

References

  1. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Family I Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria New York: Springer; 2005 pp. 161
    [Google Scholar]
  3. Ducklow HW. The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecol 1999; 30:1–10 [View Article]
    [Google Scholar]
  4. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  5. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  6. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  7. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012; 336:608–611 [View Article][PubMed]
    [Google Scholar]
  8. Wang G, Wang Y, Su H, Wu H, Li T et al. Butyratibacter algicola gen. nov., sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122. Int J Syst Evol Microbiol 2017; 67:3209–3213 [View Article][PubMed]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  10. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  13. Swofford DL. PAUP: Phylogenetic analysis using parsimony, version 3.1.1 Champaign, IL: Illinois Natural History Survey; 1993
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  18. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  19. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  20. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  21. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  22. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  23. Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-beta-hydroxybutyrate-producing marine bacteria in the order 'Rhodobacterales'. Int J Syst Evol Microbiol 2004; 54:1129–1136 [View Article][PubMed]
    [Google Scholar]
  24. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P. Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing alpha-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 2005; 55:41–47 [View Article][PubMed]
    [Google Scholar]
  25. Ying JY, Wang BJ, Dai X, Yang SS, Liu SJ et al. Wenxinia marina gen. nov., sp. nov., a novel member of the Roseobacter clade isolated from oilfield sediments of the South China Sea. Int J Syst Evol Microbiol 2007; 57:1711–1716 [View Article][PubMed]
    [Google Scholar]
  26. Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty JT et al. Roseicyclus mahoneyensis gen. nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. Int J Syst Evol Microbiol 2005; 55:1597–1603 [View Article][PubMed]
    [Google Scholar]
  27. Park S, Jung YT, Yoon JH. Pseudoroseicyclus aestuarii gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2165–2171 [View Article][PubMed]
    [Google Scholar]
  28. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp. 345–401
    [Google Scholar]
  29. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  30. Kamekura M. Lipids of extreme halophiles. In Vreeland RH, Hochstein LI. (editors) The Biology of Halophilic Bacteria Boca Raton: CRC Press; 1993 pp. 135–161
    [Google Scholar]
  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003225
Loading
/content/journal/ijsem/10.1099/ijsem.0.003225
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed