1887

Abstract

A halophilic organism, SWO25, was isolated from water sampled in Algeria at the salt lake (sebkha) of Ouargla. The novel strain stained Gram-negative, and cells were pleomorphic with a red pigmentation. Strain SWO25 grew optimally at 35–45 °C, at pH 6.0–8.0 and 0.05–0.25 M MgCl2 concentrations. Cells were extremely halophilic, with optimal growth at 4.3–5.1 M NaCl. The predominant membrane polar lipids were C20C20 glycerol diether derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate, phosphatidylglycerol sulfate, triglycosyl diether and diglycosyl diether. The major respiratory menaquinone component was MK-8. Cells were highly tolerant to the presence of decane and isooctane in the growth medium. Chemotaxonomic properties supported the assignment of strain SWO25 to the genus Haloarcula . The DNA G+C content was 61.1mol%. DNA–DNA hybridization and phylogenetic analyses of the 16S rRNA and rpoB′ genes showed that strain SWO25 is distinct from known Haloarcula species. Based on phenotypic, chemotaxonomic, genotypic and phylogenetic data, we describe a novel species of the genus Haloarcula , for which the name Haloarcula sebkhae sp. nov. is proposed. The type strain is SWO25 (=CIP 110583=JCM 19018).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003211
2019-01-10
2019-10-21
Loading full text...

Full text loading...

References

  1. Cui HL, Mou YZ, Yang X, Zhou YG, Liu HC et al. Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. Syst Appl Microbiol 2012;35:30–34 [CrossRef][PubMed]
    [Google Scholar]
  2. Echigo A, Minegishi H, Shimane Y, Kamekura M, Itoh T et al. Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2013;63:3556–3562 [CrossRef][PubMed]
    [Google Scholar]
  3. Makhdoumi-Kakhki A, Amoozegar MA, Bagheri M, Ramezani M, Ventosa A. Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. Int J Syst Evol Microbiol 2012;62:1021–1026 [CrossRef][PubMed]
    [Google Scholar]
  4. Minegishi H, Kamekura M, Kitajima-Ihara T, Nakasone K, Echigo A et al. Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. Int J Syst Evol Microbiol 2012;62:188–195 [CrossRef][PubMed]
    [Google Scholar]
  5. Song HS, Cha IT, Yim KJ, Lee HW, Hyun DW et al. Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Ant van Leeuw JG 2014;105:976–986 [CrossRef][PubMed]
    [Google Scholar]
  6. Song HS, Cha IT, Rhee JK, Yim KJ, Kim AY et al. Halostella salina gen. nov., sp. nov., an extremely halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2016;66:2740–2746 [CrossRef][PubMed]
    [Google Scholar]
  7. Xu WD, Zhang WJ, Han D, Cui HL, Yang K. Halorussus ruber sp. nov., isolated from an inland salt lake of China. Arch Microbiol 2015;197:91–95 [CrossRef][PubMed]
    [Google Scholar]
  8. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013;79:5962–5969 [CrossRef][PubMed]
    [Google Scholar]
  9. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  10. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017;163:623–645 [CrossRef][PubMed]
    [Google Scholar]
  11. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam. nov. A Van Leew JG 2016;109:565–587
    [Google Scholar]
  12. Cui HL, Zhou PJ, Oren A, Liu SJ. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 2009;13:31–37 [CrossRef][PubMed]
    [Google Scholar]
  13. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD et al. Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 2002;6:445–452 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhang WJ, Cui HL. Halomicroarcula salina sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2015;65:1628–1633 [CrossRef][PubMed]
    [Google Scholar]
  15. Amann G, Stetter KO, Llobet-Brossa E, Amann R, Antón J. Direct proof for the presence and expression of two 5% different 16S rRNA genes in individual cells of Haloarcula marismortui. Extremophiles 2000;4:373–376[PubMed]
    [Google Scholar]
  16. Mylvaganam S, Dennis PP. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 1992;130:399–410[PubMed]
    [Google Scholar]
  17. Gemmell RT, McGenity TJ, Grant WD. Use of molecular techniques to investigate possible long-term dormancy of halobacteria in ancient halite deposits. Ancient Biomol 1998;2:125–133
    [Google Scholar]
  18. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G et al. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 2004;14:2221–2234 [CrossRef][PubMed]
    [Google Scholar]
  19. Imadalou-Idres N, Carré-Mlouka A, Vandervennet M, Yahiaoui H, Peduzzi J et al. Diversity and antimicrobial activity of cultivable halophilic Achaea from three Algerian sites. J. Life Sci 2013;10:1057–1069
    [Google Scholar]
  20. Usami R, Fukushima T, Mizuki T, Inoue A, Yoshida Y et al. Organic solvent tolerance of halophilic archaea. Biosci Biotechnol Biochem 2003;67:1809–1812 [CrossRef][PubMed]
    [Google Scholar]
  21. Usami R, Fukushima T, Mizuki T, Yoshida Y, Inoue A et al. Organic solvent tolerance of halophilic archaea, Haloarcula strains: effects of NaCl concentration on the tolerance and polar lipid composition. J Biosci Bioeng 2005;99:169–174 [CrossRef][PubMed]
    [Google Scholar]
  22. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997;47:233–238
    [Google Scholar]
  23. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955;70:484–485[PubMed]
    [Google Scholar]
  24. Ihara K, Watanabe S, Tamura T. Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol 1997;47:73–77 [CrossRef][PubMed]
    [Google Scholar]
  25. Oren A, Elevi R, Watanabe S, Ihara K, Corcelli A. Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 2002;52:1831–1835 [CrossRef][PubMed]
    [Google Scholar]
  26. Takashina T, Hamamoto T, Otozai K, Grant WD, Horikoshi K. Haloarcula japonica sp. nov., a new triangular halophilic Archaebacterium. System Appl Microbiol 1990;17:177–181
    [Google Scholar]
  27. Namwong S, Tanasupawat S, Kudo T, Itoh T. Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov., isolated from salt in Thai fish sauce. Int J Syst Evol Microbiol 2011;61:231–236 [CrossRef][PubMed]
    [Google Scholar]
  28. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  29. Oren A. Characterization of the halophilic archaeal community in saltern crystallize ponds by means of polar lipid analysis. Int J Salt Lake Res 1994;3:15–29
    [Google Scholar]
  30. Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep 2017;7:12807 [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall BJ. A comparative study of the lipd composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130
    [Google Scholar]
  32. Oren A, Arahal DR, Ventosa A. Emended description of genera of the familly Halobacteriaceae. Int J System Evol Microbiol 2009;59:637–642
    [Google Scholar]
  33. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466[PubMed]
    [Google Scholar]
  34. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167
    [Google Scholar]
  35. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142[PubMed]
    [Google Scholar]
  36. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  37. Minegishi M, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymersae sububit B’ (rpoB’) gene. Int J System Evol Microb 2010;60:2398–2408
    [Google Scholar]
  38. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008;36:W465–W469 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003211
Loading
/content/journal/ijsem/10.1099/ijsem.0.003211
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error