1887

Abstract

The genus Dickeya is an important group of plant pathogens that currently comprises eight recognized species. Although most Dickeya isolates originated from infected cultivated plants, they have also been repeatedly isolated from water. To better understand the natural diversity of Dickeya , a survey was performed in small lakes surrounded by wetlands in the French region of La Dombes. Several Dickeya isolates were obtained from water or plants from lakes protected from direct agricultural inputs. Sequencing of the gapA gene revealed that five isolates, S12, S15, S24, S29 and S39, belong to a phylogenetic group separated from other Dickeya species. The genomic sequence of strain S29 clearly established its separation from the other known Dickeya species. The in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) values (<33 and <88 %, respectively) obtained by comparing strain S29 with strains of characterized Dickeya species supported the delineation of a novel species. The closest species to strain S29 is Dickeya aquatica , previously isolated from rivers, suggesting that these strains have a common ancestor adapted to a water environment. Genomic and phenotypic comparisons enabled the identification of traits distinguishing isolates S12, S15, S24, S29 and S39 from D. aquatica and from other Dickeya species. The name Dickeya lacustris sp. nov. is proposed for this taxon with S29 (=CFBP 8647=LMG 30899) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003208
2019-02-06
2019-08-18
Loading full text...

Full text loading...

References

  1. Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I et al. Host range and molecular phylogenies of the soft rot enterobacterial genera pectobacterium and dickeya. Phytopathology 2007;97:1150–1163 [CrossRef][PubMed]
    [Google Scholar]
  2. Charkowski A, Blanco C, Condemine G, Expert D, Franza T et al. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu Rev Phytopathol 2012;50:425–449 [CrossRef][PubMed]
    [Google Scholar]
  3. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016;66:5575–5599 [CrossRef][PubMed]
    [Google Scholar]
  4. Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W et al. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 2005;55:1415–1427 [CrossRef][PubMed]
    [Google Scholar]
  5. Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-Palenzuela P et al. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Int J Syst Evol Microbiol 2012;62:1592–1602 [CrossRef][PubMed]
    [Google Scholar]
  6. Sławiak M, van Beckhoven J, Speksnijder A, Czajkowski R, Grabe G et al. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur J Plant Pathol 2009;125:245–261 [CrossRef]
    [Google Scholar]
  7. van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N et al. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2014;64:768–774 [CrossRef][PubMed]
    [Google Scholar]
  8. Parkinson N, Stead D, Bew J, Heeney J, Tsror Lahkim L et al. Dickeya species relatedness and clade structure determined by comparison of recA sequences. Int J Syst Evol Microbiol 2009;59:2388–2393 [CrossRef][PubMed]
    [Google Scholar]
  9. Tian Y, Zhao Y, Yuan X, Yi J, Fan J et al. Dickeyafangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). Int J Syst Evol Microbiol 2016;66:2831–2835 [CrossRef][PubMed]
    [Google Scholar]
  10. Meneley JC. Isolation of soft-rot Erwinia spp. from agricultural soils using an enrichment technique. Phytopathology 1976;66:367–370 [CrossRef]
    [Google Scholar]
  11. Hélias V, Hamon P, Huchet E, Wolf JVD, Andrivon D. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol 2012;61:339–345 [CrossRef]
    [Google Scholar]
  12. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 1985;82:6955–6959 [CrossRef][PubMed]
    [Google Scholar]
  13. Nassar A, Darrasse A, Lemattre M, Kotoujansky A, Dervin C et al. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Appl Environ Microbiol 1996;62:2228–2235[PubMed]
    [Google Scholar]
  14. Cigna J, Dewaegeneire P, Beury A, Gobert V. Faure D. A gapA PCR sequencing assay for identifying the Dickeya and Pectobacterium potato pathogens. Plant Disease 2017;101:1278–1282
    [Google Scholar]
  15. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  16. Pritchard L, Humphris S, Saddler GS, Elphinstone JG, Pirhonen M et al. Draft genome sequences of 17 isolates of the plant pathogenic bacterium dickeya. Genome Announc 2013;1:e00978–13 [CrossRef][PubMed]
    [Google Scholar]
  17. Pritchard L, Humphris S, Baeyen S, Maes M, van Vaerenbergh J et al. Draft genome sequences of four Dickeya dianthicola and four Dickeya solani strains. Genome Announc 2013;1:e00087-12 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhao Y, Tian Y, Li X, Hu B. Complete genome sequence of a Dickeya fangzhongdai type strain causing bleeding canker of pear tree trunks. Genome Announc 2018;6:e00177-18 [CrossRef][PubMed]
    [Google Scholar]
  19. Khayi S, Blin P, Chong TM, Chan KG, Faure D. Complete genome anatomy of the emerging potato pathogen Dickeya solani type strain IPO 2222T. Stand Genomic Sci 2016;11:87 [CrossRef][PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Keen NT, Ridgway D, Boyd C. Cloning and characterization of a phospholipase gene from Erwinia chrysanthemi EC16. Mol Microbiol 1992;6:179–187 [CrossRef][PubMed]
    [Google Scholar]
  23. Ji J, Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. Use of Mu-lac insertions to study the secretion of pectate lyases by Erwinia chrysanthemi. J Gen Microbiol 1987;133:793–802 [CrossRef]
    [Google Scholar]
  24. Moulard M, Condemine G, Robert-Baudouy J. Characterization of the nucM gene coding for a nuclease of the phytopathogenic bacteria Erwinia chrysanthemi. Mol Microbiol 1993;8:685–695 [CrossRef][PubMed]
    [Google Scholar]
  25. Ngwira N, Samson R. Erwinia chrysanthemi: description of two new biovars (bv 8 and bv 9) isolated from kalanchoe and maize host plants. Agronomie 1990;10:341–345 [CrossRef]
    [Google Scholar]
  26. Reverchon S, Rouanet C, Expert D, Nasser W. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol 2002;184:654–665 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003208
Loading
/content/journal/ijsem/10.1099/ijsem.0.003208
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error