1887

Abstract

A Gram-stain negative, spherical, obligately aerobic bacterium, designated strain WN38, was isolated from a marine solar saltern on the coast of Weihai, China. Optimal growth occurred at 33 °C, pH 7.0–7.5 and in the presence of 3–4 % (w/v) NaCl. The genome of strain WN38 was found to contain the genes necessary for arsenate reductase and related proteins, indicating that it may have potential in bioremediation of heavy metal polluted environments. Comparative 16S rRNA gene sequence analysis showed that strain WN38 represented a member of the genus Coraliomargarita , and was related most closely to Coraliomargarita akajimensis KCTC 12865 (95.7 %). Pairwise sequence similarities to all other type strains of species were below 90 %. Genome-based calculations (average nucleotide identity, genome-to-genome distance and DNA G+C percentage) and results of pairwise amino acid identity (AAI >60 %) and percentage of conserved proteins (POCP >50 %) also indicated clearly that strain WN38 represents a novel species within this genus. Different phenotypic analyses, such as the detection of a quinone system composed of the sole respiratory quinone was menaquinone-7 (MK-7) and a fatty acid profile with iso-C14 : 0, C18 : 0 and C18 : 1ω9c as major components, supported this finding at the same time as contributing to a comprehensive characterization of strain WN38. On the basis of its phenotypic and genotypic properties, strain WN38 represents a novel species of the genus Coraliomargarita , for which the name Coraliomargarita sinensis sp. nov. is proposed. The type strain is WN38 (=KCTC 62602=MCCC 1H00313).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003205
2019-01-29
2019-10-17
Loading full text...

Full text loading...

References

  1. Choo YJ, Lee K, Song J, Cho JC. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum 'Verrucomicrobia'. Int J Syst Evol Microbiol 2007;57:532–537 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon J, Yasumoto-Hirose M, Katsuta A, Sekiguchi H, Matsuda S et al. Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum 'Verrucomicrobia' isolated from seawater in Japan. Int J Syst Evol Microbiol 2007;57:959–963 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon J, Katsuta A. Coraliomargarita. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  4. Liu Q-Q, Li XL, Rooney AP, Du ZJ, Chen GJ. Tangfeifania diversioriginum nov., sp. nov., a representative of the family Draconibacteriaceae. Int J Syst Evol Microbiol 2014;64:3473–3477 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  6. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  8. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:1–15 [CrossRef]
    [Google Scholar]
  13. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  14. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20:265–272 [CrossRef][PubMed]
    [Google Scholar]
  15. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 2008;12:137–141 [CrossRef][PubMed]
    [Google Scholar]
  16. Mavromatis K, Abt B, Brambilla E, Lapidus A, Copeland A et al. Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24). Stand Genomic Sci 2010;2:290–299 [CrossRef][PubMed]
    [Google Scholar]
  17. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014;9:111–118 [CrossRef]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  19. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  20. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014;196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  21. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  23. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50 Pt 5:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 1994; pp.611–651
    [Google Scholar]
  25. Dong X, Cai M. Determination of biochemical characteristics. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  26. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Second Informational Supplement CLSI document M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  27. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  28. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. 1990;http://www.microbialid.com/PDF/TechNote_101.pdf
    [Google Scholar]
  30. Fang DB, Han JR, Liu Y, Du ZJ. Seonamhaeicola marinus sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2017;67:4857–4861 [CrossRef][PubMed]
    [Google Scholar]
  31. Lin SY, Hameed A, Liu YC, Hsu YH, Hung MH et al. Ruficoccus amylovorans gen. nov., sp. nov., an amylolytic and nitrate-reducing diazotroph of the family Puniceicoccaceae. Int J Syst Evol Microbiol 2017;67:956–962 [CrossRef][PubMed]
    [Google Scholar]
  32. Lin JY, Russell JA, Sanders JG, Wertz JT. Cephaloticoccus gen. nov., a new genus of 'Verrucomicrobia' containing two novel species isolated from Cephalotes ant guts. Int J Syst Evol Microbiol 2016;66:3034–3040 [CrossRef][PubMed]
    [Google Scholar]
  33. Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H et al. Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum 'Verrucomicrobia', isolated from marine sand. Int J Syst Evol Microbiol 2007;57:2067–2072 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003205
Loading
/content/journal/ijsem/10.1099/ijsem.0.003205
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error