1887

Abstract

A novel actinomycete, designated strain NEAU-D10, was isolated from rhizosphere soil of wheat (Triticum aestivum L.) collected from Northeast Agricultural University in Harbin, Heilongjiang Province, north-east China. A polyphasic approach was employed to determine the status of strain NEAU-D10. Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces . The menaquinones detected were MK-9 (H6), MK-9 (H8) and MK-9 (H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol and three unidentified lipids. The major fatty acids were identified as iso-C16 : 0, C16 : 0, anteiso-C15 : 0 and iso-C14 : 0. Analysis of the 16S rRNA gene sequence showed that strain NEAU-D10 belongs to the genus Streptomyces with high sequence similarity to Streptomyces sioyaensis DSM 40032 (99.0 %) and Streptomyces auratus DSM 41897 (98.8 %). Moreover, multilocus sequence analysis based on five other housekeeping genes (atpD, gyrB, rpoB, recAand trpB) and the low level of DNA–DNA relatedness and phenotypic differences allowed the novel isolate to be differentiated from its most closely related strains, S. sioyaensis DSM 40032 and S. auratus DSM 41897. It is concluded that the organism can be classified as representing a novel species of the genus Streptomyces , for which the name Streptomyces inhibens sp. nov. is proposed. The type strain is NEAU-D10 (=CGMCC 4.7469=DSM 106197).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003204
2019-01-03
2019-10-17
Loading full text...

Full text loading...

References

  1. Waksman SA, Henrici AT. The Nomenclature and classification of the actinomycetes. J Bacteriol 1943;46:337–341[PubMed]
    [Google Scholar]
  2. Chun J, Youn HD, Yim YI, Lee H, Kim MY et al. Streptomyces seoulensis sp. nov. Int J Syst Bacteriol 1997;47:492–498 [CrossRef][PubMed]
    [Google Scholar]
  3. Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012;76:66–112 [CrossRef][PubMed]
    [Google Scholar]
  4. Olano C, Méndez C, Salas JA. Antitumor compounds from marine actinomycetes. Mar Drugs 2009;7:210–248 [CrossRef][PubMed]
    [Google Scholar]
  5. Goodfellow M, Fiedler HP. A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 2010;98:119–142 [CrossRef][PubMed]
    [Google Scholar]
  6. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci 2012;17:478–486 [CrossRef][PubMed]
    [Google Scholar]
  7. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987;65:501–509 [CrossRef]
    [Google Scholar]
  8. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  9. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  10. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  11. Kelly KL. Inter-Society Color Council—National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  12. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012;102:1–7 [CrossRef][PubMed]
    [Google Scholar]
  13. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  14. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993;43:805–812 [CrossRef]
    [Google Scholar]
  15. Smibert RM, Krieg NR. Phenotypic characterisation. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  16. Kim D, Chun J, Sahin N, Hah YC, Goodfellow M. Analysis of thermophilic clades within the genus Streptomyces by 16S ribosomal DNA sequence comparisons. Int J Syst Bacteriol 1996;46:581–587 [CrossRef]
    [Google Scholar]
  17. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995;45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  26. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  27. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP et al. A whole-genome assembly of Drosophila. Science 2000;287:2196–2204 [CrossRef][PubMed]
    [Google Scholar]
  28. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 2012;30:693–700 [CrossRef][PubMed]
    [Google Scholar]
  29. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  30. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  31. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30:178–182 [CrossRef][PubMed]
    [Google Scholar]
  32. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Society of Industrial Microbiology Actinomycete taxonomy special publication; 1980; pp.227–291
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  34. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–284
    [Google Scholar]
  35. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 1989;16:176–178
    [Google Scholar]
  36. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014;105:307–315 [CrossRef][PubMed]
    [Google Scholar]
  37. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011;61:1165–1169 [CrossRef][PubMed]
    [Google Scholar]
  38. Bai L, Liu C, Guo L, Piao C, Li Z et al. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 2016;109:253–261 [CrossRef][PubMed]
    [Google Scholar]
  39. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012;35:7–18 [CrossRef][PubMed]
    [Google Scholar]
  40. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003204
Loading
/content/journal/ijsem/10.1099/ijsem.0.003204
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error