1887

Abstract

A Gram-stain positive, aerobic, non-motile and short-rod-shaped strain, CFH S00084, was isolated from a sediment sample of the Yellow River in Henan Province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CFH S00084 clustered within members of Microbacterium and was most closely related to the type strains Microbacterium yannicii JCM 18959 and Microbacterium arthrosphaerae DSM 22421 (98.97 % and 98.36 % similarity, respectively). The strain grew optimally at 25–37 °C, at pH 7.0 and in 0–3 % (w/v) NaCl. The major whole-cell sugars were rhamnose and glucose. The cell-wall peptidoglycan mainly contained glycine, alanine and ornithine. The menaquinones of strain CFH S00084 were MK-13, MK-12 and MK-11. The major fatty acids detected were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The genome of strain CFH S00084 was 4.03 Mbp with a G+C content of 70.5 mol%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between CFH S00084 and the other species of the genus Microbacterium were found to be low (ANIm <85 %, ANIb <75 % and dDDH <24 %). The phylogenomic analysis provided evidence for clear phylogenetic divergence between strain CFH S00084 and its closely related type strains. On the basis of the differential physiological properties, chemotaxonomic characteristics and low ANI and dDDH results, strain CFH S00084 is considered to represent a novel species for which the name Microbacterium ureisolvens sp. nov. is proposed. The type strain is CFH S00084 (=KCTC 39802=DSM 103157).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003203
2018-12-21
2019-10-15
Loading full text...

Full text loading...

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Copenhagen: Host &Sons; 1919
    [Google Scholar]
  2. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Brevibacterium imperiale (Steinhaus) and "Corynebacterium laevaniformans" (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 1983;4:65–78 [CrossRef][PubMed]
    [Google Scholar]
  3. Takeuchi M, Hatano K. Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 1998;48:739–747 [CrossRef][PubMed]
    [Google Scholar]
  4. Kook M, Son HM, Yi TH. Microbacterium kyungheense sp. nov. and Microbacterium jejuense sp. nov., isolated from salty soil. Int J Syst Evol Microbiol 2014;64:2267–2273 [CrossRef][PubMed]
    [Google Scholar]
  5. Torkko P, Suomalainen S, Iivanainen E, Suutari M, Tortoli E et al. Mycobacterium xenopi and related organisms isolated from stream waters in Finland and description of Mycobacterium botniense sp. nov. Int J Syst Evol Microbiol 2000;50 Pt 1:283–289 [CrossRef][PubMed]
    [Google Scholar]
  6. Wu YH, Wu M, Wang CS, Wang XG, Yang JY et al. Microbacterium profundi sp. nov., isolated from deep-sea sediment of polymetallic nodule environments. Int J Syst Evol Microbiol 2008;58:2930–2934 [CrossRef][PubMed]
    [Google Scholar]
  7. Gao JL, Sun P, Wang XM, Lv FY, Sun JG. Microbacterium zeae sp. nov., an endophytic bacterium isolated from maize stem. Antonie van Leeuwenhoek 2017;110:697–704 [CrossRef][PubMed]
    [Google Scholar]
  8. Clermont D, Diard S, Bouchier C, Vivier C, Bimet F et al. Microbacterium binotii sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2009;59:1016–1022 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim KK, Park HY, Park W, Kim IS, Lee ST. Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 2005;55:2075–2079 [CrossRef][PubMed]
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  11. Ming H, Yin YR, Li S, Nie GX, Yu TT et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014;64:650–656 [CrossRef][PubMed]
    [Google Scholar]
  12. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  22. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1:18 [CrossRef][PubMed]
    [Google Scholar]
  23. Freel KC, Sarilar V, Neuvéglise C, Devillers H, Friedrich A et al. Genome Sequence of the Yeast Cyberlindnera fabianii (Hansenula fabianii). Genome Announc 2014;2: [CrossRef][PubMed]
    [Google Scholar]
  24. Delcher A.L. Glimmer Release Notes Version 3 2006
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  26. Waksman SA. The Actinomycetes. A sUmmary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  27. Atlas RM. In Parks LC. (editor) Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  28. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  29. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. European Journal of Applied Microbiology and Biotechnology 1978;5:113–122 [CrossRef]
    [Google Scholar]
  30. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960;242
    [Google Scholar]
  31. Ming H, Yin YR, Li S, Nie GX, Yu TT et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014;64:650–656 [CrossRef][PubMed]
    [Google Scholar]
  32. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012;62:2650–2656 [CrossRef][PubMed]
    [Google Scholar]
  33. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’ s Manual of Systematic Bacteriologyvol. 1989 Baltimore: Williams & Wilkins; 1943; pp.2452–2492
    [Google Scholar]
  34. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  35. Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E et al. Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 2004;54:2121–2129 [CrossRef][PubMed]
    [Google Scholar]
  36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  37. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC Using Reverse Phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  38. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986;123:31–36[PubMed]
    [Google Scholar]
  39. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  40. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  41. Chen YG, Tang SK, Zhang YQ, Li ZY, Yi LB et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 2009;96:63–70 [CrossRef][PubMed]
    [Google Scholar]
  42. Hu QW, Chu X, Xiao M, Li CT, Yan ZF et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016;66:2035–2040 [CrossRef][PubMed]
    [Google Scholar]
  43. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  44. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI, Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  45. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  46. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000;50 Pt 3:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  47. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA Sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003203
Loading
/content/journal/ijsem/10.1099/ijsem.0.003203
Loading

Data & Media loading...

Supplements

Supplementary data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error