Amycolatopsis panacis sp. nov., isolated from Panax notoginseng rhizospheric soil Free

Abstract

A novel Gram-positive bacterium, designated strain YIM PH21725, was isolated from a sample of rhizospheric soil of Panaxnotoginseng cultivated in Anning, Yunnan. The strain contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The main fatty acids identified were C17 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0. The main menaquinone was MK-9 (H4). The polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phospholipids and phospholipids of an unidentified structure containing glucosamine. The G+C content of genomic DNA was 69.43 mol%. On the basis of its 16S rRNA gene sequence, strain YIM PH21725 should belong to the genus Amycolatopsis , and was closely related to Amycolatopsis sulphurea DSM 46092 (98.57 %), Amycolatopsis jejuensis JCM13280 (97.27 %), Amycolatopsis jiangsuensis KCTC 19885 (96.88 %) and Amycolatopsis ultiminotia JCM 16989 (96.8 %). The phenotypic, chemotaxonomic, phylogenetic and digital DNA–DNA hybridization results clearly indicated that strain YIM PH21725 represents a novel species of the genus Amycolatopsis , for which the name Amycolatopsis panacis sp. nov. is proposed. The type strain is YIM PH21725 (=CCTCC AA 2017044=KCTC 49031=DSM 105902).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003202
2019-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/567.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003202&mimeType=html&fmt=ahah

References

  1. Lechevalier MP, Prauser H, Labeda DP, Ruan J-S. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986; 36:29–37 [View Article]
    [Google Scholar]
  2. Thawai C. Amycolatopsis rhizosphaerae sp. nov., isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 2018; 68:1546–1551 [View Article][PubMed]
    [Google Scholar]
  3. Tang SK, Wang Y, Guan TW, Lee JC, Kim CJ et al. Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:1073–1078 [View Article][PubMed]
    [Google Scholar]
  4. Lee SD. Amycolatopsis jejuensis sp. nov. and Amycolatopsis halotolerans sp. nov., novel actinomycetes isolated from a natural cave. Int J Syst Evol Microbiol 2006; 56:549–553 [View Article][PubMed]
    [Google Scholar]
  5. Xing K, Liu W, Zhang YJ, Bian GK, Zhang WD et al. Amycolatopsis jiangsuensis sp. nov., a novel endophytic actinomycete isolated from a coastal plant in Jiangsu, China. Antonie van Leeuwenhoek 2013; 103:433–439 [View Article][PubMed]
    [Google Scholar]
  6. Majumdar S, Prabhagaran SR, Shivaji S, Lal R. Reclassification of Amycolatopsis orientalis DSM 43387 as Amycolatopsis benzoatilytica sp. nov. Int J Syst Evol Microbiol 2006; 56:199–204 [View Article][PubMed]
    [Google Scholar]
  7. Henssen A, Kothe HW, Kroppenstedt RM. Transfer of Pseudonocardia azurea and "Pseudonocardia fastidiosa" to the Genus Amycolatopsis, with Emended Species Description. Int J Syst Bacteriol 1987; 37:292–295 [View Article]
    [Google Scholar]
  8. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: Phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  9. Li J, Zhao GZ, Qin S, Zhu WY, Xu LH et al. Streptomyces sedi sp. nov., isolated from surface-sterilized roots of Sedum sp. Int J Syst Evol Microbiol 2009; 59:1492–1496 [View Article][PubMed]
    [Google Scholar]
  10. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. European Journal of Applied Microbiology and Biotechnology 1978; 5:113–122 [View Article]
    [Google Scholar]
  11. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  12. Jurtshuk P, Aston PR, Old L. Enzymatic oxidation of tetramethyl-p-phenylenediamine and p-phenylenediamine by the electron transport particulate fraction of Azotobacter vinelandii. J Bacteriol 1967; 93:1069–1078[PubMed]
    [Google Scholar]
  13. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  14. Gordon RE, Mihm JM. The type species of the genus Nocardia. J Gen Microbiol 1962; 27:1–10 [View Article][PubMed]
    [Google Scholar]
  15. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  16. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101, MIDI Inc 1990
    [Google Scholar]
  17. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the Classification of Cellulomonas, Oerskovia and Related Taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  18. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing Peptidoglycans Based on 2, 4-diaminobutyric Acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  20. Kroppenstedt RM. Separation of Bacterial Menaquinones by HPLC Using Reverse Phase (RP18) and a Silver Loaded Ion Exchanger as Stationary Phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  21. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  25. Kluge AG, Farris JS. Quantitative Phyletics and the Evolution of Anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  29. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  31. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol 2012; 13:R56 [View Article][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  35. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003202
Loading
/content/journal/ijsem/10.1099/ijsem.0.003202
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed