1887

Abstract

A new species of the genus Trichococcus , strain Art1, was isolated from a psychrotolerant syntrophic propionate-oxidizing consortium, obtained before from a low-temperature EGSB reactor fed with a mixture of VFAs (acetate, propionate and butyrate). The 16S rRNA gene sequence of strain Art1 was highly similar to those of other Trichococcus species (99.7–99.9 %) but digital DNA–DNA hybridization values were lower than those recommended for the delineation of a novel species, indicating that strain Art1 is a novel species of the genus Trichococcus . Cells of strain Art1 are non-motile cocci with a diameter of 0.5–2.0 µm and were observed singularly, in pairs, short chains and irregular conglomerates. Cells of Art1 stained Gram-positive and produced extracellular polymeric substances . Growth was optimal at pH 6–7.5 and cells could grow in a temperature range of from −2 to 30 °C (optimum 25–30 °C). Strain Art1 can degrade several carbohydrates, and the main products from glucose fermentation are lactate, acetate, formate and ethanol. The genomic DNA G+C content of strain Art1 is 46.7 %. The major components of the cellular fatty acids are C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c. Based on genomic and physiological characteristics of strain Art1, a new species of the genus Trichococcus, Trichococcus shcherbakoviae, is proposed. The type strain of Trichococcus shcherbakoviae is Art1 (=DSM 107162 = VKM B–3260).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003193
2019-01-03
2019-12-13
Loading full text...

Full text loading...

References

  1. Scheff G, Salcher O, Lingens F. Trichococcus flocculiformis gen. nov. sp. nov. a new gram-positive filamentous bacterium isolated from bulking sludge. Appl Microbiol Biotechnol 1984;19:114–119 [CrossRef]
    [Google Scholar]
  2. Schink B. Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. Arch Microbiol 1984;139:409–414 [CrossRef]
    [Google Scholar]
  3. Janssen PH, Evers S, Rainey FA, Weiss N, Ludwig W et al. Lactosphaera gen. nov., a new genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii Schink 1984 to Lactosphaera pasteurii comb. nov. Int J Syst Bacteriol 1995;45:565–571 [CrossRef][PubMed]
    [Google Scholar]
  4. Zhilina TN, Kotsyurbenko OR, Osipov GA, Kostrikina NA, Zavarzin GA. Ruminococcus palustris sp. nov., a psychroactive anaerobic microorganism from swamp. Microbiology 1995;64:674–680
    [Google Scholar]
  5. Liu JR, Tanner RS, Schumann P, Weiss N, McKenzie CA et al. Emended description of the genus Trichococcus, description of Trichococcus collinsii sp. nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov. and of Ruminococcus palustris as Trichococcus palustris comb. nov. in the low-G+C Gram-positive bacteria. Int J Syst Evol Microbiol 2002;52:1113–1126 [CrossRef][PubMed]
    [Google Scholar]
  6. Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB et al. Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at -5°C, isolated from penguin guano in Chilean Patagonia. Int J Syst Evol Microbiol 2006;56:2055–2062 [CrossRef][PubMed]
    [Google Scholar]
  7. Strepis N, Sánchez-Andrea I, van Gelder AH, van Kruistum H, Shapiro N et al. Description of Trichococcus ilyis sp. nov. by combined physiological and in silico genome hybridization analyses. Int J Syst Evol Microbiol 2016;66:3957–3963 [CrossRef][PubMed]
    [Google Scholar]
  8. Dai YM, Zhang LL, Li Y, Li YQ, Deng XH et al. Characterization of Trichococcus paludicola sp. nov. and Trichococcus alkaliphilus sp. nov., isolated from a high-elevation wetland, by phenotypic and genomic analyses. Int J Syst Evol Microbiol 2018;68:99–105 [CrossRef][PubMed]
    [Google Scholar]
  9. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  10. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  11. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  12. Lee C, Kim J, Shin SG, Hwang S. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol Ecol 2008;65:544–554 [CrossRef][PubMed]
    [Google Scholar]
  13. Regueiro L, Veiga P, Figueroa M, Lema JM, Carballa M. Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes. Appl Microbiol Biotechnol 2014;98:2015–2027 [CrossRef][PubMed]
    [Google Scholar]
  14. Bialek K, Cysneiros D, O'Flaherty V. Hydrolysis, acidification and methanogenesis during low-temperature anaerobic digestion of dilute dairy wastewater in an inverted fluidised bioreactor. Appl Microbiol Biotechnol 2014;98:8737–8750 [CrossRef][PubMed]
    [Google Scholar]
  15. Baek G, Kim J, Cho K, Bae H, Lee C. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation. Appl Microbiol Biotechnol 2015;99:10355–10366 [CrossRef][PubMed]
    [Google Scholar]
  16. Keating C, Chin JP, Hughes D, Manesiotis P, Cysneiros D et al. Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater. Front Microbiol 2016;7:1–14 [CrossRef][PubMed]
    [Google Scholar]
  17. Zeng T, Zhang S, Gao X, Wang G, Lens PNL et al. Assessment of bacterial community composition of anaerobic granular sludge in response to short-term uranium exposure. Microb Ecol 2018;76:648–659 [CrossRef][PubMed]
    [Google Scholar]
  18. Lettinga G, Rebac S, Parshina S, Nozhevnikova A, van Lier JB et al. High-rate anaerobic treatment of wastewater at low temperatures. Appl Environ Microbiol 1999;65:1696–1702[PubMed]
    [Google Scholar]
  19. Stams AJ, van Dijk JB, Dijkema C, Plugge CM. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 1993;59:1114–1119[PubMed]
    [Google Scholar]
  20. Parshina SN, Ermakova AV, Bomberg M, Detkova EN. Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature. Int J Syst Evol Microbiol 2014;64:180–186 [CrossRef][PubMed]
    [Google Scholar]
  21. Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979;7:1513–1523 [CrossRef][PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S sequencing. In Stackebrandt EA, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: John Wiley & Sons, Ltd; 1991; pp.115–175
    [Google Scholar]
  23. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  24. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015;5;32:929–931
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2017;461–466
    [Google Scholar]
  27. Koehorst JJ, Saccenti E, Schaap PJ, Martins dos Santos VAP, Suarez-Diez M. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000 Research 1987;2016:5
    [Google Scholar]
  28. Doetsch R. Determinative methods of light microscopy. In Gerhardt P, Murray RDE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  29. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350–356 [CrossRef]
    [Google Scholar]
  30. Sheng G-P, Yu H-Q, Li X-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 2010;28:882–894 [CrossRef]
    [Google Scholar]
  31. More TT, Yadav JS, Yan S, Tyagi RD, Surampalli RY. Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 2014;144:1–25 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003193
Loading
/content/journal/ijsem/10.1099/ijsem.0.003193
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error