1887

Abstract

A bacterial strain, designated WCHPs060039, was isolated from hospital sewage in China. The strain was Gram-stain-negative, obligate aerobic, flagellum-motile and positive for oxidase and catalase. A preliminary analysis of the 16S rRNA gene sequences indicated that strain WCHPs060039 belonged to the genus Pseudomonas and was closely related to members of the Pseudomonas putida group, with the highest similarities to Pseudomonas entomophila L48 (99.5 %), Pseudomonas mosselii CIP 105259 (99.52 %), Pseudomonas taiwanensis BCRC 17751 (99.45 %) and Pseudomonas plecoglossicida NBRC 103162 (99.31 %). Whole genome sequencing of the strain was performed. Phylogenetic analysis based on a set of core gene sequences revealed that the strain was distinct from its closest Pseudomonas species. Average nucleotide identity based on blast and in silico DNA-DNA hybridizationrevealed low genome relatedness to its closest Pseudomonas species (below the recommended thresholds of 95 and 70 %, respectively, for species delineation). The major fatty acids of the strain were 16:0, 17:0 cyclo, summed feature 3 (16:1ω7c/16:1ω6c and 16:1ω6c/16:1ω7c) and summed feature 8 (18:1ω7c). The ability to utilize inositol, sorbitol and d-glucuronic acid could differentiate strain WCHPs060039 from the closely related Pseudomonas species. It is therefore evident that strain WCHPs060039 represents a novel species of the genus Pseudomonas , for which the name Pseudomonas sichuanensis sp. nov. is proposed. The type strain is WCHPs060039 (GDMCC 1.1424=CNCTC 7662).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003188
2018-12-19
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/517.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003188&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Igbinosa IH, Nwodo UU, Sosa A, Tom M, Okoh AI. Commensal Pseudomonas species isolated from wastewater and freshwater milieus in the Eastern Cape Province, South Africa, as reservoir of antibiotic resistant determinants. Int J Environ Res Public Health 2012; 9:2537–2549 [View Article][PubMed]
    [Google Scholar]
  3. Kittinger C, Lipp M, Baumert R, Folli B, Koraimann G et al. Antibiotic resistance patterns of Pseudomonas spp. isolated from the river Danube. Front Microbiol 2016; 7:586 [View Article][PubMed]
    [Google Scholar]
  4. Palleroni NJ. Introduction to the family Pseudomonadaceae. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 1981 pp. 655–665
    [Google Scholar]
  5. Anwar N, Abaydulla G, Zayadan B, Abdurahman M, Hamood B et al. Pseudomonas populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 2016; 66:1419–1425 [View Article][PubMed]
    [Google Scholar]
  6. Peix A, Ramírez-Bahena MH, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 2009; 9:1132–1147 [View Article][PubMed]
    [Google Scholar]
  7. Willems A, Falsen E, Pot B, Jantzen E, Hoste B et al. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 1990; 40:384–398 [View Article][PubMed]
    [Google Scholar]
  8. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992; 36:1251–1275 [View Article][PubMed]
    [Google Scholar]
  9. Brown GR, Sutcliffe IC, Cummings SP. Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol 2001; 51:67–72 [View Article][PubMed]
    [Google Scholar]
  10. Tamaoka J, Ha D-M, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Bacteriol 1987; 37:52–59 [View Article]
    [Google Scholar]
  11. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article][PubMed]
    [Google Scholar]
  12. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J et al. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 2012; 35:455–464 [View Article][PubMed]
    [Google Scholar]
  13. de Bentzmann S, Plésiat P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol 2011; 13:1655–1665 [View Article][PubMed]
    [Google Scholar]
  14. Keel C, Weller DM, Natsch A, Défago G, Cook RJ et al. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 1996; 62:552–563[PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics 1991 pp. 115–175
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  18. Poppel MT, Skiebe E, Laue M, Bergmann H, Ebersberger I et al. Acinetobacter equi sp. nov., isolated from horse faeces. Int J Syst Evol Microbiol 2016; 66:881–888 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  23. Chan JZ, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol 2012; 12:302 [View Article][PubMed]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  25. Wayne LG. International committee on systematic bacteriology: Announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene Series A: Medical Microbiology, Infectious Diseases, Virology. Parasitology 1988; 268:433–434
    [Google Scholar]
  26. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article][PubMed]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  28. Cowan PI. Cowan and steel's manual for the identification of medical bacteria. J Clin Pathol 1993; 46:975
    [Google Scholar]
  29. Pandey KK, Mayilraj S, Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 2002; 52:1559–1567 [View Article][PubMed]
    [Google Scholar]
  30. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Midi Technical Note 1990; 101:1–7
    [Google Scholar]
  31. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  32. Palleroni N. Pseudomonas. Bergey's Manual of Systematics of Archaea and Bacteria 2015
    [Google Scholar]
  33. Moore ERB, Tindall BJ, Dos M, Santos VAP, Pieper DH et al. Nonmedical: Pseudomonas. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass New York, NY: Springer New York; 2006 pp. 646–703
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003188
Loading
/content/journal/ijsem/10.1099/ijsem.0.003188
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error