Marinobacterium boryeongense sp. nov., isolated from seawater Free

Abstract

A Gram-stain-negative and strictly aerobic bacterium, designated DMHB-2, was isolated from a sample of seawater collected off the Yellow Sea coast of the Republic of Korea. Cells were short rods and motile by means of a single polar flagellum. Catalase and oxidase activities were positive. Growth occurred at pH 5.5–10.0 (optimum, pH 6.0), 15–45 °C (optimum, 25 °C) and with 1–9 % NaCl (optimum, 3 %). The respiratory quinone was ubiquinone-8 and the major fatty acids were C16 : 0 (17.9 %), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 26.1 %) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 37.4 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DMHB-2 belong to the genus Marinobacterium , with the highest 16S rRNA gene sequence similarity of 95.2 % to Marinobacterium zhoushanense KCTC 42782. The genomic DNA G+C content of strain DMHB-2 was 60.8 mol%. On the basis of the phenotypic, chemotaxonomic and genotypic characteristics presented in this study, strain DMHB-2 is suggested to represent a novel species of the genus Marinobacterium , for which the name Marinobacterium boryeongense sp. nov. is proposed. The type strain is DMHB-2 (=KACC 19225=JCM 31902).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003184
2018-12-19
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/493.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003184&mimeType=html&fmt=ahah

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997; 47:369–376 [View Article][PubMed]
    [Google Scholar]
  2. Bae SS, Jung J, Chung D, Baek K. Marinobacterium aestuarii sp. nov., a benzene-degrading marine bacterium isolated from estuary sediment. Int J Syst Evol Microbiol 2018; 68:651–656 [View Article][PubMed]
    [Google Scholar]
  3. Park S, Jung YT, Kim S, Yoon JH. Marinobacterium aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:1718–1723 [View Article][PubMed]
    [Google Scholar]
  4. Yeon Hwang C, Jung Yoon S, Lee I, Baek K, Mi Lee Y et al. Marinobacterium profundum sp. nov., a marine bacterium from deep-sea sediment. Int J Syst Evol Microbiol 2016; 66:1561–1566 [View Article][PubMed]
    [Google Scholar]
  5. Han SB, Wang RJ, Yu XY, Su Y, Sun C et al. Marinobacterium zhoushanense sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:3437–3442 [View Article][PubMed]
    [Google Scholar]
  6. Jin HM, Lee HJ, Kim JM, Park MS, Lee K et al. Litorimicrobium taeanense gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 2011; 61:1392–1396 [View Article][PubMed]
    [Google Scholar]
  7. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575[PubMed]
    [Google Scholar]
  8. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  9. Barrow GI, Cowan F. Steel's Manual for the Identification of Medical Bacteria, 3rd ed. London: Cambridge University Press; 1993
    [Google Scholar]
  10. Jendrossek D, Selchow O, Hoppert M. Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. Appl Environ Microbiol 2007; 73:586–593 [View Article][PubMed]
    [Google Scholar]
  11. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  12. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  15. Cole JR, Wang Q, Fish JA, Chai B, Mcgarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–D642 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  21. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 1989; 479:297–306 [View Article][PubMed]
    [Google Scholar]
  22. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; pp. 267–287
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  24. Kim H, Choo YJ, Song J, Lee JS, Lee KC et al. Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 2007; 57:1659–1662 [View Article][PubMed]
    [Google Scholar]
  25. Kim JM, Lee SH, Jung JY, Jeon CO. Marinobacterium lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2010; 60:1828–1831 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003184
Loading
/content/journal/ijsem/10.1099/ijsem.0.003184
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed