1887

Abstract

Pectobacterium carotovorum M022 has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022 falls into a novel clade separated from the other Pectobacterium species. The in silico DNA–DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022 may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022 (=CFBP 8629=LMG 30744) is proposed as the type strain of the Pectobacterium fontis sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003180
2019-01-02
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/470.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003180&mimeType=html&fmt=ahah

References

  1. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012;13:614–629 [CrossRef][PubMed]
    [Google Scholar]
  2. Caruso A, Licciardello G, La RR, Catara V, Bella P. Mixed infection of Pectobacterium caratovorum subsp. carotovorum and P. carotovorum subsp. brasiliense in tomato stem rot in Italy. J Plant Pathol 2016;98:661–665
    [Google Scholar]
  3. Nazerian E, Sijam K, Mior Ahmad ZA, Vadamalai G. First Report of Cabbage Soft Rot Caused by Pectobacterium carotovorum subsp. carotovorum in Malaysia. Plant Dis 2011;95:491 [CrossRef]
    [Google Scholar]
  4. Meng X, Chai A, Shi Y, Xie X, Ma Z et al. Emergence of bacterial soft rot in cucumber caused by Pectobacterium carotovorum subsp. brasiliense in China. Plant Dis 2017;101:279–287 [CrossRef]
    [Google Scholar]
  5. Gao B-D, Wang X-L, Xia H. First report of artichoke bacterial stem rot caused by Pectobacterium carotovorum subsp. carotovorum in China. Plant Dis 2011;95:1026 [CrossRef]
    [Google Scholar]
  6. Baştaş KK, Hekimhan H, Maden S, Tör M. First report of bacterial stalk and head rot disease caused by Pectobacterium atrosepticum on sunflower in Turkey. Plant Dis 2009;93:1352
    [Google Scholar]
  7. Gillis A, Santana MA, Rodríguez M, Romay G. First report of bell pepper soft-rot caused by ectobacterium carotovorum subsp. brasiliense in Venezuela. Plant Dis 2017;101:1671 [CrossRef]
    [Google Scholar]
  8. Popović T, Jelušić A, Milovanović P, Janjatović S, Budnar M et al. First report of pectobacterium atrosepticum, causing bacterial soft rot on calla lily in Serbia. Plant Dis 2017;101:2145 [CrossRef]
    [Google Scholar]
  9. Charkowski AO. The changing face of bacterial soft-rot diseases. Annu Rev Phytopathol 2018;56:269–288 [CrossRef][PubMed]
    [Google Scholar]
  10. Goto M, Matsumoto K. Erwinia carotovora subsp. wasabiae subsp. nov. isolated from diseased rhizomes and fibrous roots of japanese horseradish (Eutrema wasabi Maxim.). Int J Syst Bacteriol 1987;37:130–135 [CrossRef]
    [Google Scholar]
  11. Koh YJ, Kim GH, Lee YS, Sohn SH, Koh HS et al. Pectobacterium carotovorum subsp. actinidiae subsp. nov., a new bacterial pathogen causing canker-like symptoms in yellow kiwifruit, Actinidia chinensis. New Zeal J Crop Hortic Sci 2012;40:269–279 [CrossRef]
    [Google Scholar]
  12. Sarfraz S, Riaz K, Oulghazi S, Cigna J, Sahi ST et al. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int J Syst Evol Microbiol 2018;68:3551–3556 [CrossRef][PubMed]
    [Google Scholar]
  13. Nabhan S, de Boer SH, Maiss E, Wydra K. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int J Syst Evol Microbiol 2013;63:2520–2525 [CrossRef][PubMed]
    [Google Scholar]
  14. Gardan L, Gouy C, Christen R, Samson R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 2003;53:381–391 [CrossRef][PubMed]
    [Google Scholar]
  15. Alcorn SM, Orum TV, Steigerwalt AG, Foster JL, Fogleman JC et al. Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int J Syst Bacteriol 1991;41:197–212 [CrossRef][PubMed]
    [Google Scholar]
  16. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG et al. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int J Syst Evol Microbiol 2016;66:5379–5383 [CrossRef][PubMed]
    [Google Scholar]
  17. Waleron M, Misztak A, Waleron M, Franczuk M, Wielgomas B et al. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst Appl Microbiol 2018;41:85–93 [CrossRef][PubMed]
    [Google Scholar]
  18. Dees MW, Lysøe E, Rossmann S, Perminow J, Brurberg MB. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2017;67:5222–5229 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhang Y, Fan Q, Loria R. A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 2016;39:252–259 [CrossRef][PubMed]
    [Google Scholar]
  20. Chan KG, Tan WS. Genomic Insights of Pectobacterium carotovorum Strain M022 Quorum-Sensing Activity through Whole-Genome Sequencing. Genome Announc 2015;3:e0155414 [CrossRef][PubMed]
    [Google Scholar]
  21. De Vos P. Multilocus sequence determination and analysis. Methods in Microbiology Academic Press; pp.385–407
    [Google Scholar]
  22. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015;38:237–245 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  25. Baumler DJ, Ma B, Reed JL, Perna NT. Inferring ancient metabolism using ancestral core metabolic models of enterobacteria. BMC Syst Biol 2013;7:46 [CrossRef][PubMed]
    [Google Scholar]
  26. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009;10:154 [CrossRef][PubMed]
    [Google Scholar]
  27. Waleron M, Misztak A, Waleron M, Franczuk M, Jonca J et al. Pectobacterium zantedeschiae sp. nov., a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst Appl Microbiol 2018; [CrossRef]
    [Google Scholar]
  28. Elbing K, Brent R. Media preparation and bacteriological tools. Current Protocols in Molecular Biology Hoboken, NJ, USA: John Wiley & Sons, Inc; pp.1–7
    [Google Scholar]
  29. Oulghazi S, Khayi S, Lafkih N, Massaoudi Y, El Karkouri A et al. First report of Dickeya dianthicola causing blackleg on potato in Morocco. In Plant Diseasevol. 101 2017; pp.1671–1672 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003180
Loading
/content/journal/ijsem/10.1099/ijsem.0.003180
Loading

Data & Media loading...

Supplements

Supplementary data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error