1887

Abstract

A Gram-stain-negative, non-motile, aerobic bacterial strain, designated T17 was isolated from a sample of sewage sediment from a Busan park (Republic of Korea). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain T17 had the highest 16S rRNA gene sequence similarity to Dyadobacter soli KCTC 22481 (97.3 %), D.yadobacter fermentans DSM 18053 (97.1 %) and D.yadobacter sediminis CGMCC 1.12895 (97.1 %). The isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. soli KCTC 22481 (28.2±3.6 %). The DNA G+C content was 49.1 mol%. The unique respiratory quinone was MK-7 and the major polar lipids were phosphatidylethanolamine, five unidentified lipids, four aminolipids, two unidentified phospholipids and one glycophospholipid. The predominant cellular fatty acids (>5 % of total) were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH; 44.3 %), iso-C15 : 0 (15.7 %), C16 : 1 ω5c (9.6 %), iso-C17 : 0 3-OH (9.3 %) and C16 : 0 (5.6 %). Moreover, physiological and biochemical characteristics distinguished strain T17 from its related species, including temperature and pH ranges for growth, being positive for acetate hydrolysis, and being negative for acid produced from melibiose and rhamnose. The genotypic, chemotaxonomic and phenotypic data revealed that strain T17 represents a novel species of the genus Dyadobacter , for which the name Dyadobacter luticola sp. nov. is proposed. The type strain is T17 (=KCTC 52981=CCTCC AB 2017091).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003178
2018-12-19
2024-11-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/465.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003178&mimeType=html&fmt=ahah

References

  1. Reddy GS, Garcia-Pichel F. Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 2005; 55:1295–1299 [View Article][PubMed]
    [Google Scholar]
  2. Chelius MK, Triplett EW. Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 2000; 50 Pt 2:751–758 [View Article][PubMed]
    [Google Scholar]
  3. Chaturvedi P, Reddy GS, Shivaji S. Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 2005; 55:2113–2117 [View Article][PubMed]
    [Google Scholar]
  4. Liu QM, Im WT, Lee M, Yang DC, Lee ST. Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2006; 56:1939–1944 [View Article][PubMed]
    [Google Scholar]
  5. Baik KS, Kim MS, Kim EM, Kim HR, Seong CN. Dyadobacter koreensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007; 57:1227–1231 [View Article][PubMed]
    [Google Scholar]
  6. Dong Z, Guo X, Zhang X, Qiu F, Sun L et al. Dyadobacter beijingensis sp. nov., isolated from the rhizosphere of turf grasses in China. Int J Syst Evol Microbiol 2007; 57:862–865 [View Article][PubMed]
    [Google Scholar]
  7. Tang Y, Dai J, Zhang L, Mo Z, Wang Y et al. Dyadobacter alkalitolerans sp. nov., isolated from desert sand. International Journal Of Systematic And Evolutionary Microbiology 2009; 59:60–64 [View Article]
    [Google Scholar]
  8. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F et al. Dyadobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2010; 60:1640–1643 [View Article][PubMed]
    [Google Scholar]
  9. Lee M, Woo SG, Park J, Yoo SA, Sp D. Dyadobacter soli sp. nov., a starch-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 2010; 60:2577–2582
    [Google Scholar]
  10. Chen L, Jiang F, Xiao M, Dai J, Kan W et al. Dyadobacter arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol 2013; 63:1616–1620 [View Article][PubMed]
    [Google Scholar]
  11. Chun J, Kang JY, Joung Y, Kim H, Joh K et al. Dyadobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:1788–1792 [View Article][PubMed]
    [Google Scholar]
  12. Shen L, Liu Y, Yao T, Wang N, Xu B et al. Dyadobacter tibetensis sp. nov., isolated from glacial ice core. Int J Syst Evol Microbiol 2013; 63:3636–3639 [View Article][PubMed]
    [Google Scholar]
  13. Wang L, Chen L, Ling Q, Li CC, Tao Y et al. Dyadobacter jiangsuensis sp. nov., a methyl red degrading bacterium isolated from a dye-manufacturing factory. Int J Syst Evol Microbiol 2015; 65:1138–1143 [View Article][PubMed]
    [Google Scholar]
  14. Tian M, Zhang RG, Han L, Zhao XM, Lv J. Dyadobacter sediminis sp. nov., isolated from a subterranean sediment sample. Int J Syst Evol Microbiol 2015; 65:827–832 [View Article][PubMed]
    [Google Scholar]
  15. Gao JL, Sun P, Wang XM, Qiu TL, Lv FY et al. Dyadobacter endophyticus sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016; 66:4022–4026 [View Article][PubMed]
    [Google Scholar]
  16. Song Y, Jia J, Liu D, Choi L, Wang G et al. Sediminibacterium roseum sp. nov., isolated from sewage sediment. Int J Syst Evol Microbiol 2017; 67:4674–4679 [View Article][PubMed]
    [Google Scholar]
  17. Fan H, Su C, Wang Y, Yao J, Zhao K et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 2008; 105:529–539 [View Article][PubMed]
    [Google Scholar]
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  23. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  26. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the international committee on systematics of prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  27. Murray R, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  28. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  29. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  30. Liu QM, Im WT, Lee M, Yang DC, Lee ST. Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2006; 56:1939–1944 [View Article][PubMed]
    [Google Scholar]
  31. Weeks OB. Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036. In Reichenbach H, Weeks OB. (editors) the Flavobacterium–Cytophaga Group Weinheim: Gesellschaft für Biotechnologische Forshung.; 1981 pp. 108–114
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric Acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003178
Loading
/content/journal/ijsem/10.1099/ijsem.0.003178
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error