1887

Abstract

Two Gram-negative, rod-shaped, non-spore-forming bacteria, MEX20-17 and MEX47-22, were isolated from the digestive system of Heterorhabditis atacamensis and Heterorhabditis mexicana entomopathogenic nematodes, respectively. Their 16S rRNA gene sequences suggest that strains MEX20-17 and MEX47-22 belong to the γ-Proteobacteria and to the genus Photorhabdus . Deeper analyses using housekeeping-gene-based and whole-genome-based phylogenetic reconstruction suggest that MEX20-17 is closely related to Photorhabdus khanii and that MEX47-22 is closely related to Photorhabdus luminescens . Sequence similarity scores confirm these observations: MEX20-17 and P. khanii DSM 3369 share 98.9 % nucleotide sequence identity (NSI) of concatenated housekeeping genes, 70.4 % in silico DNA–DNA hybridization (isDDH) and 97 % orthologous average nucleotide identity (orthoANI); and MEX47-22 and P. luminescens ATCC 29999 share 98.9 % NSI, 70.6 % isDDH and 97 % orthoANI. Physiological characterization indicates that both strains differ from all validly described Photorhabdus species and from their more closely related taxa. We therefore propose to classify MEX20-17 and MEXT47-22 as new subspecies within P. khanii and P. luminescens , respectively. Hence, the following names are proposed for these strains: Photorhabdus khanii subsp. guanajuatensis subsp. nov. with the type strain MEX20-17 (=LMG 30372=CCOS 1191) and Photorhabdus luminescens subsp. mexicana subsp. nov. with the type strain MEX47-22 (=LMG 30528=CCOS 1199). These propositions automatically create Photorhabdus khanii subsp. khanii subsp. nov. with DSM 3369 as the type strain (currently classified as P. khanii ), and Photorhabdus luminescens subsp. luminescens subsp. nov. with ATCC 29999 as the type strain (currently classified as P. luminescens ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003154
2019-01-28
2020-01-18
Loading full text...

Full text loading...

References

  1. Poinar GO, Veremchuk G V. A new strain of entomopathogenic nematode and geographical distribution of Neoaplectana carpocapsae Weiser (Rhabditida, Steinernematidae). Zool Zhurnal 1970;49:966–969
    [Google Scholar]
  2. Khan A, Brooks WM, Hirschmann H. Chromonema heliothidis n. gen., n. sp. (Steinernematidae, Nematoda), a parasite of Heliothis zea (Noctuidae, Lepidoptera), and other insects. J Nematol 1976;8:159[PubMed]
    [Google Scholar]
  3. Kaya HK, Gaugler R. Entomopathogenic nematodes. Annu Rev Entomol 1993;38:181–206 [CrossRef]
    [Google Scholar]
  4. Lacey LA, Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 2012;44:218[PubMed]
    [Google Scholar]
  5. Boemare NE, Akhurst RJ, Mourant RG. DNA Relatedness between xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 1993;43:249–255 [CrossRef]
    [Google Scholar]
  6. Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA et al. Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 2004;54:1301–1310 [CrossRef][PubMed]
    [Google Scholar]
  7. An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2011;62:539–543 [CrossRef][PubMed]
    [Google Scholar]
  8. An R, Grewal PS. Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2010;61:291–297 [CrossRef][PubMed]
    [Google Scholar]
  9. Ferreira T, van Reenen C, Pagès S, Tailliez P, Malan AP et al. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol Microbiol 2013;63:1853–1858 [CrossRef][PubMed]
    [Google Scholar]
  10. Ferreira T, van Reenen CA, Endo A, Tailliez P, Pagès S et al. Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. Int J Syst Evol Microbiol 2014;64:1540–1545 [CrossRef][PubMed]
    [Google Scholar]
  11. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 1999;49 Pt 4:1645–1656 [CrossRef][PubMed]
    [Google Scholar]
  12. Glaeser SP, Tobias NJ, Thanwisai A, Chantratita N, Bode HB et al. Photorhabdus luminescens subsp. namnaonensis subsp. nov., isolated from Heterorhabditis baujardi nematodes. Int J Syst Evol Microbiol 2017;67:1046–1051 [CrossRef]
    [Google Scholar]
  13. Hazir S, Stackebrandt E, Lang E, Schumann P, Ehlers RU et al. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst Appl Microbiol 2004;27:36–42 [CrossRef][PubMed]
    [Google Scholar]
  14. Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 2013;66:30–39 [CrossRef][PubMed]
    [Google Scholar]
  15. Szállás E, Koch C, Fodor A, Burghardt J, Buss O et al. Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Int J Syst Bacteriol 1997;47:402–407 [CrossRef][PubMed]
    [Google Scholar]
  16. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010;60:1921–1937 [CrossRef][PubMed]
    [Google Scholar]
  17. Thomas GM, Poinar GO. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 1979;29:352–360 [CrossRef]
    [Google Scholar]
  18. Tóth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 2008;58:2579–2581 [CrossRef][PubMed]
    [Google Scholar]
  19. Machado RAR, Wüthrich D, Kuhnert P, Arce CCM, Thönen L et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int J Syst Evol Microbiol 2018;68:2664–2681 [CrossRef][PubMed]
    [Google Scholar]
  20. Maneesakorn P, An R, Daneshvar H, Taylor K, Bai X et al. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Mol Phylogenet Evol 2011;59:271–280 [CrossRef][PubMed]
    [Google Scholar]
  21. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015;38:237–245 [CrossRef]
    [Google Scholar]
  22. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  23. Bedding RA, Akhurst RJ. A simple technique for the detection of insect paristic rhabditid nematodes in soil. Nematologica 1975;21:109–110 [CrossRef]
    [Google Scholar]
  24. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998;64:795–799
    [Google Scholar]
  25. Tremblay J, Déziel E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 2008;48:509–515 [CrossRef]
    [Google Scholar]
  26. Akhurst RJ, Mourant RG, Baud L, Boemare NE. Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int J Syst Bacteriol 1996;46:1034–1041 [CrossRef][PubMed]
    [Google Scholar]
  27. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586
    [Google Scholar]
  28. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  29. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  30. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  32. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014;9:e112963 [CrossRef]
    [Google Scholar]
  33. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  34. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef]
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  36. Dereeper A, Audic S, Claverie J-M, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 2010;10:8 [CrossRef]
    [Google Scholar]
  37. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008;36:W465–W469 [CrossRef][PubMed]
    [Google Scholar]
  38. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  40. Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006;7:439 [CrossRef][PubMed]
    [Google Scholar]
  41. Letunic I, Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  43. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  44. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  45. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  46. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;95–98
    [Google Scholar]
  47. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003154
Loading
/content/journal/ijsem/10.1099/ijsem.0.003154
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error